
A Hybrid Deep Model
for Learning to Rank Data Tables

Mohamed Trabelsi, Zhiyu Chen, Brian D. Davison, Jeff Heflin
Computer Science and Engineering

Lehigh University, Bethlehem, PA, USA
{mot218,zhc415,davison,heflin}@cse.lehigh.edu

Abstract—We address the problem of ad hoc table retrieval via
a new neural architecture that incorporates both semantic and
relevance matching. Understanding the connection between the
structured form of a table and query tokens is an important yet
neglected problem in information retrieval. We use a learning-
to-rank approach to train a system to capture semantic and
relevance signals within interactions between the structured form
of candidate tables and query tokens. Convolutional filters that
extract contextual features from query/table interactions are
combined with a feature vector based on the distributions of
term similarity between queries and tables. We propose using
row and column summaries to incorporate table content into
our new neural model. We evaluate our approach using two
datasets, and we demonstrate substantial improvements in terms
of retrieval metrics over state-of-the-art methods in table retrieval
and document retrieval, and neural architectures from sentence,
document, and table type classification adapted to the table
retrieval task. Our ablation study supports the importance of
both semantic and relevance matching in the table retrieval.

Index Terms—Table retrieval, Table search, Neural networks,
Learning to rank.

I. INTRODUCTION

In this era of Big Data, datasets are publicly available for
users to explore a vast amount of information across a variety
of topics. Among all types of publicly available datasets, the
data table represents the most prevalent form of data. Many
users have questions that can be resolved from this data, but
these questions may go unanswered due to ignorance regarding
the presence of the data, ignorance regarding where to look
for the data, and inability to formulate queries using the
domain-specific vocabulary of the data’s creators. Ad hoc table
retrieval is a problem that has many similarities to document
retrieval, but one that also presents both new challenges
and opportunities. Researchers have focused on utilizing the
knowledge contained in tables in multiple tasks including
augmenting tables [1], [2], extracting knowledge from tables
[3], table retrieval [2], [4]–[7], and semantic labeling [8], [9].
A table retrieval algorithm can be used as a core component in
other tasks such as table extension [10] and table mining [11].
In this paper, we address the table retrieval task by presenting
a new deep semantic and relevance matching model in order
to extract a set of top-ranked tables for a given query.

Supervised learning, based on features from tables, queries,
and query-table pairs [1], [4], has resulted in the best per-
forming table retrieval systems. Building on this, Zhang and
Balog [12] introduced semantic features to embed queries and

tables into a semantic space, and then train a supervised model
using the semantic and traditional features. However, there
are major drawbacks of prior approaches for ad hoc table
retrieval. First, they are based on hand-crafted features, and
that limits the ability to capture multiple levels of similarity
between query and table. Second, they ignore query relevance
matching. Third, they assume equal contribution of each query
token to the final relevance score when ranking web tables
against a given query.

Several methods in the literature for document retrieval fo-
cus on modeling contextual information in search queries and
documents. The contextual information captured by classical
models such as TF-IDF and BM25 are usually coarse-grained
and rely on matching the surface forms of query terms. To
address this, deep learning-based methods have been proposed
to achieve semantic matching [13]–[17].

In order to overcome the limitations of prior methods in
table retrieval, we propose a new model that combines deep
contextual features with features based on term similarity
distributions. Our algorithm learns convolutional filters that
extract contextual features from query/table interactions (se-
mantic matching). This is combined with a feature vector
based on the distributions of term similarity between queries
and tables (relevance matching). Additionally, we incorporate
table values into our model using row and column summaries.
Finally, we learn the contribution of each query token to
the final relevance score. These models are trained using
a learning-to-rank approach with a listwise loss function.
We show that our new method can improve table retrieval
performance using a collection of tables from Wikipedia [12]
and Web tables from a Microsoft dataset [18].

In summary, we make the following contributions:
• We propose a new semantic similarity model that is

able to capture multiple levels of semantic signals be-
tween query and table. In order to capture contextual
information, we apply various-sized convolutional filters
to an interaction matrix built from the embeddings of
query and table tokens, and then apply a second layer
of convolutional filters to extract higher level features.
Our representation of the table includes summary vectors
about the contents of the table, both in terms of values
in each column and values in selected rows.

• We demonstrate the usefulness of query relevance-
specific components for the table retrieval task. Using

Brian D. Davison
Accepted to IEEE International Conference on Big Data (IEEE BigData), December 2020.
Copyright 2020, IEEE.

kernel pooling, we learn a feature vector based on the
probability distribution of the similarity of each document
token to each query token, and we learn the contribution
of each token to the final relevance score using a Term
Gating Network. Each of these components lead to im-
provement on retrieval tasks without leading to a large
increase in the number of parameters of the model.

• We compare our proposed method not only against
methods from table retrieval and document retrieval,
but we also adapt architectures from multiple domains
to the table retrieval task. We show that ad hoc table
retrieval benefits from table-specific architectures; that is,
straightforward application of leading document retrieval
approaches results in reduced performance.

II. BACKGROUND

A. Learning to rank for document retrieval

Learning to rank (LTR) for document retrieval relies on a
training data that is composed of query-document relevance
pairs to train a model to predict rankings [19]. LTR models
represent a rankable query-document pair as a feature vector
F (q, d), where q is a query and d is a document. In traditional
machine learning models, the function F represents hand-
crafted features. A ranking model M is trained to map the
feature vector F (q, d) to a real-valued score such that more
relevant documents to a given query are scored higher in order
to maximize a rank-based metric. Liu [19] categorized the LTR
methods into three categories based on their training objec-
tives. The pointwise category associates each query-document
pair with a relevance score, and the objective is to predict the
exact relevance score using classification or regression models.
The pairwise category does not try to accurately predict the
exact relevance score of a query-document pair; instead, it
focuses on the relative order between two documents. Finally,
the listwise category is directly related to the ranking task
where the input to a listwise based algorithm is the entire set
of documents associated with a query in the training data.

In recently proposed LTR models, deep architectures are
used to learn both features and models simultaneously. Huang
et al. [13] proposed the first Deep Neural Network architecture
for web search using query-title pairs. The proposed model
is based on the Siamese architecture [20], in which a neural
network model independently maps the query q and the title
of a given document d into feature vectors.

Existing deep matching models for the ad-hoc retrieval
task can be categorized into two types. The first type, the
representation-focused model, tries to extract a good feature
representation for a sequence of tokens using a deep neural
network. For example, Shen et al. [14] proposed a Convolu-
tional Deep Structured Semantic Model (C-DSSM) in which
a convolutional neural network (CNN) is used in a Siamese
architecture. So the feature extractor F is a CNN that is
applied to letter-tri-gram input representation, while M is
the cosine similarity function. In ARC-I [15], F is a CNN,
and M is a multi-layer perceptron (MLP). Models in this
first group defer the interaction between two sentences until

learning individual representations, so that there is a risk of
losing important details for the matching task.

The second group, the interaction-based models, starts by
building local interactions between two texts and then trains
a deep model to capture the important interaction patterns
for matching. For example, in ARC-II [15], F maps each
text to a sequence of word embeddings, while M is a CNN
over the interaction matrix between the two texts. In DUET
[16], an interaction-based network and a representation-based
network are combined in a single architecture. Jaech et al. [21]
proposed a deep network architecture called Match-Tensor that
uses multiple representations for the interaction matrix in order
to capture rich signals to calculate query-document relevance.
Two bi-directional LSTM models are used to encode the query
and document word-embedding sequences into LSTM states.
Guo et al. [17] developed a deep relevance matching model
(DRMM) to perform term matching using histogram-based
features. The authors argued that the interaction-based models
that apply convolutional filters on the interaction matrix are
too dependent on relative positions of tokens, and do not
sufficiently distinguish between similarity matching and exact
matching signals. A Term Gating Network (TGN) controls the
contribution of each query token to the final score. Dai et al.
[22] proposed a Convolutional Kernel-based Neural Ranking
Model (Conv-KNRM) for ad-hoc search. Conv-KNRM uses
a CNN to embed n-grams of the query and document into a
unified embedding space, and computes the similarity between
each pair of n-gram embeddings. These similarities are com-
pared to a set of K kernels, where each kernel is a normal
distribution with a given mean and standard deviation. Then
kernel-pooling [23] is used to summarize the similarities into
a soft-matching feature vector of dimension K.

B. Ad hoc table retrieval

In a table retrieval task, a table can be considered as a
document, and traditional document retrieval methods can
be applied to table ranking. Cafarella et al. [2], [4] retrieve
relevant documents using web search engines, and then tables
are extracted from the highest-ranking retrieved documents.
The simplest approach is to represent a table by a single field
containing all the text associated with the table. The retrieval
score is then calculated using existing retrieval methods, such
as language models or BM25 [24]. However, a table has
multiple components of varying importance, which means
that retrieval models for multi-field documents are often more
appropriate [5]. For supervised ranking of documents, features
are grouped into three categories: document, query, and query-
document features [25]. In the case of table retrieval, multiple
query, table, and query-table features are proposed in the
literature [1], [4]. Zhang and Balog [12] proposed extending
these features with semantic matching between queries and
tables using various semantic spaces.

Recent work has used embedding techniques to learn a
low dimensional representation for table tokens. Deng et al.
[26] proposed a natural language modeling based approach
to embed table tokens into low dimensional vectors. The

trained embedding is then used with entity similarity from a
knowledge base to rank tables. Trabelsi et al. [27] proposed a
new word embedding model for the tokens of table attributes
using contextual information of every table. The model is
used to predict additional contexts of each table that are
incorporated into a mixed ranking model to compute relevance
score. Using matrix factorization, Chen et al. [6] generated
additional headers that are used in ranking table-query pairs.

III. PROPOSED METHOD

In this section, we introduce our proposed deep relevance
model to enhance ranking of tables given a user’s query. In
training, a set of queries Q = {q1, q2, . . . , qm} is given. Each
query qi is associated with a list of tables ti = (ti1, t

i
2, . . . , t

i
ni),

where tij denotes the jth table and ni is the size of ti.
Each list of tables ti is associated with a list of relevance
scores yi = (yi1, y

i
2, . . . , y

i
ni) where yij denotes the relevance

score of table tij with respect to query qi. We propose fw, a
new deep relevance model with parameters w, that is used
to predict the relevance score of a given query-table pair
(qi, tij). Our proposed model fw = M ◦ F contains a feature
extractor function F and a ranking model M . A feature vector
xi
j = F (qi, tij) is created from each query-table pair (qi, tij).

Then a ranking function M is used to predict a relevance
score M(xi

j). So for a given query qi and a list of tables
ti associated with the query, the objective is to obtain a list
of scores zi = (M(xi

1),M(xi
2), . . . ,M(xi

ni)). The predicted
relevance scores are used to rank query-table pairs so that
higher ranked tables should be more relevant to the query.

A. Listwise loss function for table retrieval

We propose using a listwise based loss function for table
retrieval rather than relying on pointwise and pairwise ap-
proaches for two reasons. First, we are interested in training
our model to generate a ranked list of tables for a given
query without requiring the predictions of our model to match
the ground truth relevance scores. Second, although negative
sampling can be used in the pairwise approach to avoid the
quadratic increase of query-table pairs, the pairwise strategy
can increase data imbalance when there is a dominating class
[19]. So the loss function L is given by:

L(w) =

m∑︂
i=1

l(yi, zi) (1)

where l is a listwise loss function. We adapt the loss function
proposed by Cao et al. [28] to the table retrieval task. Given a
query qi associated with a list of tables ti and relevance scores
yi, the feature extractor F extracts features from a given query-
table pair, then a ranking model M generates a score list zi.
As in Cao et al. [28], the ground truth relevance scores and
the predicted scores are converted into probabilities Pyi(qi, tij)
and Pfw(q

i, tij), respectively, using the softmax function. With
cross entropy loss, for a query qi, l(yi, zi) equals to:

l(yi, zi(w)) = −
ni∑︂
j=1

Pyi(qi, tij)× log(Pfw(q
i, tij)) (2)

The gradient of l(yi, zi(w)) with respect to model parameters
w is detailed in Cao et al. [28].

B. Deep relevance model architecture

We propose a new interaction-based deep semantic and
relevance matching model (DSRMM) for table retrieval. There
are two classes of neural architectures for ad hoc retrieval.
Semantic similarity architectures treat the query and target
as equals, and try to match them. Query relevance architec-
tures exploit characteristics of the ad hoc retrieval task. Our
hybrid model combines both concepts into one architecture.
We extract semantic and relevance feature vectors from the
deep semantic similarity model and query relevance matching
network, respectively. The two features are then concatenated
and passed through a fully connected layer to predict a retrieval
score under the semantic and relevance settings. For a given
query qi and table tij , the final relevance score is given by

fw(q
i, tij) = NNc([SS(q

i, tij);QR(qi, tij)]) (3)

where SS is the semantic similarity neural network, QR is the
query relevance neural network, and NNc is a neural network
used to predict the relevance score from a vector concatenating
the outputs of the semantic and relevance networks.

1) Inputs to Networks: The input to our architecture is a
query-table pair. A given table tij contains description, cell
values, and attributes or headers as shown in Figure 1. The
description denotes the metadata of the table such as page
title, section title, table caption, etc. The input representation
of a table, denoted by T i

j , contains the word embeddings of
description and attributes. Cell values contain rich information
that can be used to match query and tables. Some queries
depend on the presence of specific columns, others depend
on the presence of specific rows. In order to incorporate row
and column representations into T i

j , we present a row/column
summarizer component that compresses each row and each
column into a fixed length feature vector. In particular, given
the k-th row rk and l-th column cl from tij , the outputs of the
summarizer component S(rk) and S(cl) are given by:

S(rk) =
1

|rk|
∑︂
w∈rk

vw and S(cl) =
1

|cl|
∑︂
w∈cl

vw

where vw is the word embedding of token w, and |rk| and |cl|
are the number of tokens in the k-th row and l-th column of tij ,
respectively. A table tij with nr rows and nc columns results
in nr + nc additional feature vectors that are concatenated to
T i
j to form the |tij | × k table representation, where k is the

dimensionality of word embeddings. The query representation,
denoted by Qi, of qi is calculated using the word embedding
of each token in the query. So the dimensionality of Qi is
|qi| × k, where |qi| is the length of the query. For the rest of
the paper, we assume that |tij | is equal to m for all tables, and
|qi| is equal to n for all queries.

2) Semantic similarity component: Semantic similarity ex-
tracts contextual features from query-table interactions to infer
the semantic meaning and relation between query and table.
The top portion of Figure 1 illustrates the semantic similarity

𝒇𝒘(𝒒
𝒊, 𝒕𝒋

𝒊)

𝑺𝒆𝒎𝒂𝒏𝒕𝒊𝒄
𝑭𝒆𝒂𝒕𝒖𝒓𝒆 𝑽𝒆𝒄𝒕𝒐𝒓

𝑹𝒆𝒍𝒆𝒗𝒂𝒏𝒄𝒆
𝑭𝒆𝒂𝒕𝒖𝒓𝒆 𝑽𝒆𝒄𝒕𝒐𝒓

𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒊𝒐𝒏

𝑭𝑪𝑳

|𝒒𝒊| × 𝒌 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏

𝒐𝒇 𝒒𝒊

|𝒕𝒋
𝒊| × 𝒌 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏

𝒐𝒇 𝒕𝒋
𝒊

|𝒒𝒊| × 𝒌 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏

𝒐𝒇 𝒒𝒊

𝑷𝒂𝒊𝒓𝒘𝒊𝒔𝒆
𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏
𝑽𝒐𝒍𝒖𝒎𝒆

(|𝒒𝒊|, |𝒕𝒋
𝒊|, 𝒌)

(𝒘𝒕𝟏 × 𝒉𝒕𝟏) 𝑪𝑵𝑵

(𝒘𝒕𝟐 × 𝒉𝒕𝟐) 𝑪𝑵𝑵

(𝒘𝒕𝟑 × 𝒉𝒕𝟑) 𝑪𝑵𝑵

(𝟑 × 𝟑) 𝑪𝑵𝑵

𝟏 × 𝟏
𝑪𝑵𝑵

𝑮𝒍𝒐𝒃𝒂𝒍
𝑨𝒗𝒆𝒓𝒂𝒈𝒆
𝑷𝒐𝒐𝒍𝒊𝒏𝒈

𝑴𝒂𝒙𝑷𝒐𝒐𝒍𝒊𝒏𝒈
+

𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒊𝒐𝒏

𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒊𝒐𝒏

𝟏𝑫
𝑪𝑵𝑵

𝟏𝑫
𝑪𝑵𝑵

𝟏𝑫
𝑪𝑵𝑵

𝟏𝑫
𝑪𝑵𝑵

𝑻𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆𝒅
𝒆𝒎𝒃𝒆𝒅𝒅𝒊𝒏𝒈

𝒑𝒂𝒊𝒓𝒘𝒊𝒔𝒆
𝒄𝒐𝒔𝒊𝒏𝒆

𝑲𝒆𝒓𝒏𝒆𝒍 𝑷𝒐𝒐𝒍𝒊𝒏𝒈
𝒇𝒆𝒂𝒕𝒖𝒓𝒆

|𝒕𝒋
𝒊| × 𝒌 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏

𝒐𝒇 𝒕𝒋
𝒊

Row/Column
summarizer

𝑼𝒑𝒑𝒆𝒓 𝒂𝒏𝒅 𝑳𝒐𝒘𝒆𝒓 𝑵𝒆𝒕𝒘𝒐𝒓𝒌𝒔
𝒉𝒂𝒗𝒆 𝒔𝒂𝒎𝒆 𝒊𝒏𝒑𝒖𝒕𝒔

Fig. 1: Architecture of Deep Semantic and Relevance Matching Model (DSRMM) for table retrieval. ⊕ denotes the concatenation
operator, and ⊗ is the pointwise multiplication operator. The semantic and relevance networks extract semantic and relevance
feature vectors respectively. The concatenated vector of semantic and relevance features is passed through a fully connected
network to predict the final relevance score between query and table.

component, SM , in detail. To capture semantic similarity, we
build the interaction matrix X between query and table using
the pointwise multiplication between pairwise rows from query
representation Qi and table representation T i

j . In tables, token
order only matters locally; the rows and columns could be
arbitrarily ordered without changing the meaning of the table.
Thus, there is less utility in encoding sequences with the bi-
LSTM models as is done in Match-Tensor [21].

To capture multiple levels of similarity between the query
and table, we propose using multiple convolutional filters
with different width and height. The width indicates the
number of query tokens that are used in the convolution.
The set of width values is given by {wt1, wt2, wt3}. The
height value indicates the number of tokens from the table
that are used in the convolution. The set of height values
is given by {ht1, ht2, ht3}. Each table is represented as a
matrix T i

j ∈ IRm×k, and each query is represented as a matrix
Qi ∈ IRn×k. After pointwise multiplication of each query-
table pair of tokens, we obtain the interaction tensor X with
dimension n × m × k. We pass X through k1 filters of size
(wt1 × ht1), k2 filters of size (wt2 × ht2), and k3 filters of
size (wt3×ht3) to obtain Xwt1×ht1 , Xwt2×ht2 , and Xwt3×ht3

feature maps respectively. We apply a max pooling operation
to each feature map, and we concatenate the resulting tensors
into one tensor with size (n/2×m/2×(k1+k2+k3)). In order
to extract high level semantic interactions between the table
and query, we apply k4 convolutional filters of size (3 × 3);

then we reduce the number of depth channels using s filters
with size (1× 1). We summarize the information obtained in
each channel using Global Average Pooling (GAP) to obtain
our semantic similarity feature vector SS(qi, tij).

3) Query relevance component: Guo et al. [17] demon-
strated that many neural models for document retrieval de-
pended on semantic similarity, but this is an inappropriate
measure for the task. They argued that ad hoc retrieval depends
on exact matching and query term importance, and that some-
times queries only need to match part of the document, not the
document as a whole. Semantic similarity on the other hand
assumes that the items being matched are roughly equivalent
in scope, that their meanings are composed from their parts,
and that items must be matched in their entirety. We believe
that this argument for a specialized architecture applies equally
to table retrieval. However, because semantic similarity still
provides a useful signal based on context, we design a model
that includes the best features of both approaches.

Our query relevance component adapts Guo et al.’s match-
ing histogram mapping [17] to the table retrieval task. The
matching histogram mapping is based on a hard assignment
of matching similarities between a given query token and
the table tokens. This histogram-based feature counts the
number of table tokens whose similarity to the query token
is within the bin’s range. However, this representation is not
differentiable and not computationally efficient. Therefore, we
adapt kernel-pooling [23] for soft-match signals to the table

retrieval task. The objective of using kernel pooling is to
extract a soft matching histogram between a given query token
and table tokens. Given a query token qil and table tij , we
use r1 1-D convolutions to translate each token. Then we
calculate cosine similarity between the translated tokens. There
are two advantages of the convolution. First, it allows us to
learn similarities that are present in our query/table collection
but that were not captured by the Glove [29] corpus. Second,
instead of updating the word embedding (|V | × k parameters,
where V is the vocabulary), we update the convolutional filters
(r1×k parameters), so that we decrease the complexity of the
model (as r1 << |V |).

qil is embedded to qi
l, then translated to vi

l. The cosine
similarity between vi

l and the sth token of tij is given by
Cls. Suppose that we have K kernels for soft matching,
with mean µ = {µ1, µ2, . . . , µK}, and standard deviation
σ = {σ1, σ2, . . . , σK}; the soft matching assignment of query
token qil to kth kernel is given by

Kk(q
i
l , t

i
j) =

m∑︂
s=1

exp(− (Cls − µk)
2

2σ2
k

) (4)

Kk calculates the soft matching similarities around µk with a
variance σ2

k. The closer Clm is to µk, the higher is Kk. The
kernel pooling feature vector of query token qil and table tij is
given by:

KP (qil , t
i
j) = [K1(q

i
l , t

i
j);K2(q

i
l , t

i
j), . . . ,KK(qil , t

i
j)] (5)

Since exact matching is an important signal in any retrieval
task, we reserve the first kernel K1 for soft exact matching.
So, we set µ1 to 1, and σ1 to 0.001.

Query tokens are not equally important for relevance match-
ing. In order to model each query token importance, we use a
Term Gating Network (TGN) [17] to control the contribution
of each query token to the final relevance score. For a given
query qi, the gating function is given by:

gj =
exp(wgq

i
j)∑︁n

l=1 exp(wgqi
l)

(6)

where wg is the weight vector of the term gating network,
and qi

l is the embedding of query token qil , The final feature
vector using relevance matching is given by:

QR(qi, tij) = [hij
1 ;h

ij
2 , . . . , h

ij
|qi|] (7)

with
hij
l = gl ×KP (qil , t

i
j) (8)

Our final model captures both semantic similarity and query
relevance matching which both play an important role in ad
hoc table retrieval.

IV. EVALUATION

We evaluate our approach using two different data collec-
tions and compare it against a number of baselines.

A. Data and query collections

1) WikiTables: This dataset is composed of the WikiTables
corpus [30] containing over 1.6M tables. Each table has five
indexable fields: table caption, attributes (column headings),
data rows, page title, and section title. Additional LTR features
[12] are provided for each table. We use the same test queries
that were used by Zhang and Balog [12]. For the ground-
truth relevance scores, every query-table pair is evaluated
using three numbers: 0 means “irrelevant”, 1 means “partially
relevant” and 2 means “relevant”. The total number of queries
in the WikiTables collection is 60. We report results of the
mean of five runs of five-fold cross-validation of the entire
query-table pairs collection for our method and baselines.

2) WebQueryTable: Additionally, we use the WebQuery-
Table [18] collection, which also contains query-table pairs.
Each query-table pair has a binary relevance value, and only
one table is relevant to a given query. The tables were selected
from the top-ranked web page, and the annotators were asked
to label whether the extracted table is relevant to the query
or not. The number of tables is 148,851. Each table has four
indexable fields: table caption, table sub-caption, attributes,
and data rows. The total number of queries is 21,142. The
dataset is pre-split, where we use 252,420 query-table pairs to
train our model, and 71,479 pairs for testing.

B. Baselines

We compare the performance of our proposed model against
several baselines from multiple fields.

1) Unsupervised table retrieval: We compare the perfor-
mance of our proposed method against MCON [27] which is
based on new word embeddings for attribute tokens of tables.
When calculating the retrieval score of MCON, we use the
MaxTable ranking method which was shown to be the best
ranking method for unsupervised table retrieval [27].

2) Ad-hoc table retrieval: We compare DSRMM against
state-of-the-art methods for table retrieval: LTR and STR [12].
Table2Vec [26] is another system that solves the same task, but
the reported performance is lower than that of STR. Therefore,
we do not include Table2Vec in our evaluation.

3) Unsupervised document ranking approaches: Unsuper-
vised document ranking approaches can be applied to table
retrieval if a linearization is applied to the table to create a
sequence of terms. Depending on the structure of the table,
we obtain two categories of baselines:

Single-field document ranking: A table is considered as a
single field document by concatenating indexable fields. We
compare our approach against two baselines in the category
of single-field document ranking. The first ranking method,
SingleField-BM25, is based on BM25 to calculate a retrieval
score. In the second ranking method, called SingleField-P,
we calculate the score of a query-table pair using word
embedding-based ranking method MaxTable [27].

Multi-field document ranking: In a multi-field ranking
scenario, a table is defined using multiple fields. For example,
in WikiTables data, the fields are: page title, section title, table
caption, attributes and table body or values. We compare our

TABLE I: Table retrieval evaluation results for WikiTables dataset

Category Method NDCG@5 MRR MAP
Unsupervised table retrieval MCON [27] 0.515±0.018 0.532±0.019 0.519±0.021

Ad-hoc table retrieval LTR [12] 0.514±0.039 0.570±0.038 0.522±0.035
STR [12] 0.582±0.037 0.636±0.037 0.591±0.035

Unsupervised document ranking
SingleField-BM25 0.451±0.032 0.516±0.038 0.477±0.030

SingleField-P 0.471±0.023 0.501±0.027 0.482±0.031
MultiField-P 0.499±0.026 0.523±0.027 0.492±0.029

LTR for document retrieval

C-DSSM [14] 0.510±0.027 0.548±0.026 0.521±0.026
ARC-I [15] 0.553±0.033 0.607±0.032 0.553±0.029
ARC-II [15] 0.567±0.029 0.613±0.029 0.562±0.029
DUET [16] 0.524±0.037 0.579±0.041 0.528±0.035

Match-Tensor [21] 0.569±0.030 0.613±0.034 0.565±0.031
DRMM [17] 0.482±0.023 0.522±0.028 0.491±0.025

Conv-KNRM [22] 0.595±0.033 0.638±0.031 0.608±0.032
Sentence classification Kim [31] 0.566±0.034 0.617±0.035 0.564±0.037

Document classification HAN [32] 0.567±0.034 0.614±0.037 0.565±0.033
Table type classification TabNet [33] 0.570±0.030 0.616±0.029 0.568±0.029
Ad-hoc table retrieval Our proposed model (DSRMM) 0.640±0.029 0.680±0.028 0.642±0.029

method against MultiField-P which is based on the pretrained
Glove word embedding when calculating cosine similarity.
MaxTable [27] similarity measure is used to calculate the score
between query tokens and a given field in a table.

4) Learning to rank for document retrieval methods:
We compare our proposed method against C-DSSM [14],
ARC-I [15], ARC-II [15], DUET [16], Match-Tensor [21],
DRMM [17], and Conv-KNRM [22]. A given document is
the concatenation of the description and attributes of a table.

5) Sentence classification: Kim [31] proposed a CNN for
sentence classification. A 1-D convolutional layer with mul-
tiple filter widths is applied to the concatenation of word
embeddings of sequence tokens. In our table retrieval task,
a given sentence is the concatenation of tokens in description,
query, and attributes. The final output is a relevance score
instead of classification score.

6) Document classification: HAN [32] is a hierarchical
attention network for document classification. It is composed
of four parts: a word sequence encoder, a word-level attention
layer, a sentence encoder and a sentence-level attention layer.
A GRU-based [34] sequence encoder is used to encode each
token in a given sentence into a hidden state. In a table retrieval
scenario, a document contains sentences from the query, table
description, and attributes.

7) Table type classification: Nishida et al. [33] proposed
a hybrid model, called TabNet, for table classification. The
model is composed of a recurrent neural network (RNN)
to encode a sequence of tokens of each cell. Then, the
attention mechanism from Yang et al. [32] is applied to extract
important tokens from each cell, and form an input volume.
To use TabNet for table retrieval, we add a cell to the table
that contains the query. So, in addition to encoding the original
cells of a given table using RNN, we also encode query tokens.

C. Experimental Setup

In DSRMM, we use a pretrained neural word embedding
from Glove with k = 300. We choose not to update the word
embedding when minimizing the loss function for two reasons:
first, we have far fewer labeled query-table pairs than examples

from the unlabeled text corpus used to train Glove. Second,
by freezing word embeddings, we reduce model complexity,
and focus the efforts of training on extracting semantic and
relevance matching. We train our model for 30 epochs, and
each batch contains only tables that are candidates of a given
query in order to calculate the listwise loss. We use the Adam
optimizer for gradient descent. We set the number of query
tokens n to 6, and the number of table tokens m to 100. The
m table tokens contain the first 50 tokens from description,
first 30 tokens from attributes, and 20 rows and columns. We
start by including column summaries, and then row summaries
because in many cases, tables contain more rows than columns.
We set the number of CNN filters of the first layer k1, k2,
and k3 to 20. The set of width values {wt1, wt2, wt3} is
equal to {3, 5, 7}, and the set of height values is equal to
{3, 3, 3}. k4, which is the number of CNN filters in the second
layer, is equal to 200. We set the dimension s of the semantic
matching component to 100. We set the number of kernels
in the relevance matching component to 5. So, given that the
cosine similarity is between [−1, 1], the means of the kernels
are µ = [1, 0.75, 0.25,−0.25,−0.75]. The standard deviations
of the kernels are σ = [0.001, 0.1, 0.1, 0.1, 0.1]. We reserve
the first kernel (µ1 = 1 and σ1 = 0.001) for the exact match.
We release our code on GitHub1.

D. Experimental results

We evaluate the performance of our proposed method and
baselines on the table retrieval task using Normalized Dis-
counted Cumulative Gain (NDCG), Mean Reciprocal Rank
(MRR), and Mean Average Precision (MAP).

1) Ranking results: Table I shows the performance of dif-
ferent approaches on the WikiTables collection. We show that
our proposed method DSRMM outperforms the baselines for
all evaluation metrics. Consistent with what has been shown
in ad hoc document retrieval, supervised approaches perform
better on ad hoc table retrieval than unsupervised approaches.
Among unsupervised table and document retrieval, MCON

1https://github.com/medtray/IEEEBigData2020-DSRMM-Table-Retrieval

achieves higher performance for all evaluation metrics. This
can be explained by the use of a mixed ranking model that
incorporates the metadata of a table and the additional contexts
in order to calculate the retrieval score.

TABLE II: Table retrieval results for WebQueryTable.

Method NDCG@5 MRR/MAP
Match-Tensor [21] 0.3232 0.3256
Conv-KNRM [22] 0.6052 0.5978

Kim [31] 0.3078 0.3097
HAN [32] 0.4620 0.4384

TabNet [33] 0.4876 0.4597
DSRMM 0.6516 0.6345

Although Kim [31], HAN, and TabNet are not designed for
table retrieval, we show that these models have competitive
results compared to many of the other methods. Among these
methods, TabNet has the best performance, and this can be
explained by the fact that TabNet is designed for table type
classification, so the input of TabNet is similar to table retrieval
based methods. On the other hand, the primary input of HAN
and Kim [31] are documents and sentences, respectively.

The deep semantic matching component of DSRMM ex-
tracts interactions between query tokens and table tokens
using convolutional filters. We explain the improvement in
performance of our model compared to baselines by three
facts. First, the different low-level filters capture multiple
levels of similarity which are important in a retrieval task.
Second, some patterns are hard to capture using only one
layer of convolutional filters, so in DSRMM, the second set
of convolutional filters identify high level interactions. Third,
the semantic component is a position dependent component,
and treats all query tokens equally. To solve that, our pro-
posed relevance matching component provides position free
and strength-preserving histograms that are weighted by the
importance of each query using a TGN. To test significance,
we use a two-tailed paired t-test between DSRMM and the best
baseline reported in Table I which is Conv-KNRM. We found
a t-test significance at level 0.05 for all evaluation metrics.

For the WebQueryTable dataset, we compare the perfor-
mance of our method against the top two approaches in
LTR for document retrieval category from Table I: Conv-
KNRM and Match-Tensor, and neural models from sentence,
document, and table type classification (Kim [31], HAN, and
TabNet). We note that we do not compare to LTR/STR because
these methods require a wide range of features that are not
provided in the dataset. For WebQueryTable dataset, there is
only one relevant table per query, so MRR is always equivalent
to MAP (and thus only one column is used to report results on
both metrics in the Table II). As shown in Table II, our method
outperforms Match-Tensor, Kim [31], HAN, and TabNet by
a large margin. As with WikiTables, Conv-KNRM is the
closest competitor. Conv-KNRM captures semantic matching
of unigrams, bigrams, and trigrams between query and table
tokens, but the query tokens are treated uniformly.

2) Analysis of alternative design choices: In order to justify
the importance of each component in our proposed method,

we present an ablation study of our hybrid model using the
WikiTables dataset. We train two versions of our model: the
first version is only the semantic similarity component, and
the second version is only the query relevance component.
Our study shows that the semantic similarity network has
better performance than the query relevance network. The full
architecture outperforms both isolated components, and adding
query relevance to semantic similarity increases NDCG@5
from 0.601 to 0.640. Furthermore, removing the term gating
network drops the performance of the query relevance compo-
nent from 0.542 to 0.532, and this supports the idea of having
different contributions to relevance score for each query term.

We study the effect of removing the Row/Column summa-
rizer from DSRMM as shown in the last row of the ablation
analysis. So we define a baseline in which we randomly
select 50 string values from each table, and append the values
tokens to description and attributes tokens. Adding all values is
computationally expensive and consumes a significant amount
of memory. Removing the Row/Column summarizer lowers
scores for all evaluation metrics. Thus, each component of
our system has a positive effect on the final results. Table III
shows a decrease in retrieval metrics for the query relevance
component when using 2 kernels in kernel pooling as opposed
to 5 kernels in the original DSRMM. So, two kernels are not
enough to extract fine-grained relevance matching signals.

For system variations analysis, Table III shows that the
listwise based approach leads to better retrieval results than
the pointwise loss function which is consistent with what
has been shown in document retrieval results. With listwise
loss, DSRMM focuses on ranking the tables, rather than
predicting the exact relevance score. We study a second system
variation that consists of adding STR features to the DSRMM
model. STR represents the set of features for query, table,
and query-table pairs and semantic features from various
spaces. We use precalculated STR features from [12]. We
append STR features to our proposed semantic and relevance
features, and train our model. Table III shows that adding STR
features leads to a slight improvement over vanilla DSRMM
for NDCG@5. However, the DSRMM model trained with
description, attributes, and row and column summaries has
the best performance for MRR and MAP, by using only word
embedding space for semantic and relevance matching. So
extracting STR features is no longer required to achieve the
best performance in table retrieval. This is especially important
since features like bag-of-entities and bag-of-categories [12]
are not always available.

V. CONCLUSION

We have shown that a hybrid deep model that combines
a semantic similarity component and a query relevance com-
ponent outperforms the best previously published results in
table retrieval (STR) [12], achieving up to 9.96% improvement
in NDCG@5 score. Furthermore, we have demonstrated how
our approach can be used on tables for which fewer metadata
features are available than those required by STR. We have
shown that adding the LTR features to our system helps less

TABLE III: Analysis of alternative design choices using WikiTables dataset

Analysis Method NDCG@5 MRR MAP

Ablation

Semantic similarity component only 0.601±0.031 0.640±0.033 0.596±0.031
Query relevance component only 0.542±0.036 0.594±0.030 0.549±0.027

Query relevance component only without TGN 0.532±0.034 0.583±0.030 0.537±0.032
Query relevance only with 2 kernels 0.502±0.034 0.555±0.036 0.511±0.034

DSRMM without Row/Column Summarizer 0.627±0.026 0.668±0.028 0.629±0.028

System variations DSRMM+Pointwise loss 0.617±0.026 0.655±0.028 0.612±0.028
DSRMM+STR 0.642±0.021 0.679±0.023 0.641±0.021

Proposed method DSRMM 0.640±0.029 0.680±0.028 0.642±0.029

than adding information about the data values in the table
using row and column summaries. This suggests that the
specialized LTR [1], [4] and STR [12] features are not useful
once one has developed a high quality model for table retrieval.

Acknowledgment

This material is based upon work supported by the National
Science Foundation under Grant No. IIS-1816325.

REFERENCES

[1] C. S. Bhagavatula, T. Noraset, and D. Downey, “Methods for exploring
and mining tables on wikipedia,” in Proc. of ACM SIGKDD Workshop
on Interactive Data Exploration and Analytics, 2013, pp. 18–26.

[2] M. J. Cafarella, A. Halevy, and N. Khoussainova, “Data integration for
the relational web,” Proc. VLDB Endow., no. 1, pp. 1090–1101, 2009.

[3] E. Muñoz, A. Hogan, and A. Mileo, “Using linked data to mine rdf
from wikipedia’s tables,” in Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, 2014, pp. 533–542.

[4] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang,
“Webtables: Exploring the power of tables on the web,” Proc. VLDB
Endow., vol. 1, no. 1, pp. 538–549, Aug. 2008.

[5] R. Pimplikar and S. Sarawagi, “Answering table queries on the web
using column keywords,” Proc. VLDB Endow., vol. 5, no. 10, pp. 908–
919, Jun. 2012.

[6] Z. Chen, H. Jia, J. Heflin, and B. D. Davison, “Leveraging schema
labels to enhance dataset search,” in Proc. European Conference on
Information Retrieval (ECIR). Springer, 2020, pp. 267–280.

[7] Z. Chen, M. Trabelsi, J. Heflin, Y. Xu, and B. D. Davison, “Table search
using a deep contextualized language model,” in Proc. of the 43rd Int’l
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2020, pp. 589–598.

[8] Z. Chen, H. Jia, J. Heflin, and B. D. Davison, “Generating schema labels
through dataset content analysis,” in Companion Proceedings of The Web
Conference, 2018, pp. 1515–1522.

[9] M. Trabelsi, J. Cao, and J. Heflin, “Semantic labeling using a deep
contextualized language model,” CoRR, vol. abs/2010.16037, 2020.

[10] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri, “Infogather:
entity augmentation and attribute discovery by holistic matching with
web tables,” in Proc. of the ACM SIGMOD Int’l Conf. on Management
of Data, 2012, pp. 97–108.

[11] Y. A. Sekhavat, F. D. Paolo, D. Barbosa, and P. Merialdo, “Knowledge
base augmentation using tabular data,” in Proceedings of the Workshop
on Linked Data on the Web, ser. CEUR Workshop Proceedings, 2014,
co-located with the 23rd International World Wide Web Conference.

[12] S. Zhang and K. Balog, “Ad hoc table retrieval using semantic similar-
ity,” in Proc. World Wide Web Conference (WWW), 2018, pp. 1553–1562.

[13] P. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. P. Heck, “Learning
deep structured semantic models for web search using clickthrough
data,” in Proc. of the 22nd ACM Int’l Conf. on Information and
Knowledge Management (CIKM), 2013, pp. 2333–2338.

[14] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “Learning semantic
representations using convolutional neural networks for web search,”
in 23rd International World Wide Web Conference, WWW, Companion
Volume, 2014, pp. 373–374.

[15] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional neural network
architectures for matching natural language sentences,” in Advances in
Neural Information Processing Systems 27, 2014, pp. 2042–2050.

[16] B. Mitra, F. Diaz, and N. Craswell, “Learning to match using local and
distributed representations of text for web search,” in Proceedings of
the 26th International Conference on World Wide Web, WWW, 2017,
pp. 1291–1299.

[17] J. Guo, Y. Fan, Q. Ai, and W. B. Croft, “A deep relevance matching
model for ad-hoc retrieval,” in Proc. of the 25th ACM Int’l Conf. on
Information and Knowledge Management (CIKM), 2016, pp. 55–64.

[18] Z. Yan, D. Tang, N. Duan, J.-W. Bao, Y. Lv, M. Zhou, and Z. Li,
“Content-based table retrieval for web queries,” Neurocomputing, vol.
349, pp. 183–189, 2017.

[19] T.-Y. Liu, “Learning to rank for information retrieval,” Found. Trends
Inf. Retr., vol. 3, no. 3, pp. 225–331, Mar. 2009.

[20] Y. Lecun and Y. Bengio, Convolutional networks for images, speech,
and time-series. MIT Press, 1995.

[21] A. Jaech, H. Kamisetty, E. K. Ringger, and C. Clarke, “Match-tensor: a
deep relevance model for search,” ArXiv, vol. abs/1701.07795, 2017.

[22] Z. Dai, C. Xiong, J. Callan, and Z. Liu, “Convolutional neural networks
for soft-matching n-grams in ad-hoc search,” in Proc. of the 11th ACM
Int’l Conf. on Web Search and Data Mining (WSDM), 2018, p. 126–134.

[23] C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power, “End-to-end neural ad-
hoc ranking with kernel pooling,” in Proc. 40th Int’l ACM SIGIR Conf.
on Research and Development in Information Retr., 2017, pp. 55–64.

[24] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and
M. Gatford, “Okapi at TREC-3,” in Overview of the Third Text REtrieval
Conference (TREC-3), January 1995, pp. 109–126.

[25] T. Qin, T. M. Liu, J. Xu, and H. Li, “LETOR: A benchmark collection
for research on learning to rank for information retrieval,” Information
Retrieval, vol. 13, pp. 346–374, 2009.

[26] L. Zhang, S. Zhang, and K. Balog, “Table2vec: Neural word and entity
embeddings for table population and retrieval,” in Proc. of the 42nd
Int’l ACM SIGIR Conf. on Research and Development in Information
Retrieval, 2019, p. 1029–1032.

[27] M. Trabelsi, B. D. Davison, and J. Heflin, “Improved table retrieval using
multiple context embeddings for attributes,” in 2019 IEEE International
Conference on Big Data (BigData), 2019, pp. 1238–1244.

[28] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li, “Learning to rank: from
pairwise approach to listwise approach,” in Proceedings of the 24th
International Conference on Machine Learning, 2007, pp. 129–136.

[29] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors
for word representation,” in Proc. of the Conf. on Empirical Methods in
Natural Language Processing (EMNLP), 2014, pp. 1532–1543.

[30] C. Bhagavatula, T. Noraset, and D. Downey, “Tabel: Entity linking in
web tables,” in International Semantic Web Conference, 2015, pp. 425–
441.

[31] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1746–1751.

[32] Z. Yang, D. Yang, C. Dyer, X. He, A. J. Smola, and E. H. Hovy, “Hierar-
chical attention networks for document classification,” in Proc. of Conf.
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2016, pp. 1480–1489.

[33] K. Nishida, K. Sadamitsu, R. Higashinaka, and Y. Matsuo, “Understand-
ing the semantic structures of tables with a hybrid deep neural network
architecture,” in Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, 2017, pp. 168–174.

[34] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder–decoder for statistical machine translation,” in Proc, of the
Conf. on Empirical Methods in Natural Language Processing (EMNLP),
Oct. 2014, pp. 1724–1734.

	Introduction
	Background
	Learning to rank for document retrieval
	Ad hoc table retrieval

	Proposed method
	Listwise loss function for table retrieval
	Deep relevance model architecture
	Inputs to Networks
	Semantic similarity component
	Query relevance component

	Evaluation
	Data and query collections
	WikiTables
	WebQueryTable

	Baselines
	Unsupervised table retrieval
	Ad-hoc table retrieval
	Unsupervised document ranking approaches
	Learning to rank for document retrieval methods
	Sentence classification
	Document classification
	Table type classification

	Experimental Setup
	Experimental results
	Ranking results
	Analysis of alternative design choices

	Conclusion
	References

