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Abstract—Table retrieval is the task of extracting the most
relevant tables to answer a user’s query. Table retrieval is an
important task because many domains have tables that contain
useful information in a structured form. Given a user’s query,
the goal is to obtain a relevance ranking for query-table pairs,
such that higher ranked tables should be more relevant to the
query. In this paper, we present a context-aware table retrieval
method that is based on a novel embedding for attribute tokens.
We find that differentiated types of contexts are useful in building
word embeddings. We also find that including a specialized
representation of numerical cell values in our model improves
table retrieval performance. We use the trained model to predict
different contexts of every table. We show that the predicted
contexts are useful in ranking tables against a query using a
multi-field ranking approach. We evaluate our approach using
public WikiTables data, and we demonstrate improvements in
terms of NDCG over unsupervised baseline methods in the table
retrieval task.

Index Terms—Table retrieval, Table search, Word embedding,
Neural embedding, Information Retrieval.

I. INTRODUCTION

Vast amounts of information that are related to scientific,
political, and cultural topics, are stored in tabular form. Many
users have questions that can be resolved from this data, but
these questions may go unanswered due to ignorance regarding
the presence of the data, ignorance regarding where to look for
the data, and inability to formulate queries using the domain-
specific vocabulary of the data’s owners. Our long-term goal is
to develop a system that allows users to search across all tables
on the Internet. This is a Big Data problem due to both volume
(billions of tables) and variety (often, the schemas of tables
are very different). The field of information retrieval is clearly
relevant to this problem, but we argue that table retrieval
presents both new challenges and opportunities. Researchers
have focused on utilizing the knowledge contained in tables in
multiple tasks including augmenting tables [1]-[4], extracting
knowledge from tables [5]], table retrieval or query answering
[2]], [6]-[8], and table type classification [9], [10].

Table retrieval is an important problem because tables con-
tain valuable knowledge in various domains. A table retrieval
algorithm can be used as a core component in other tasks such
as table extension [|11]] and table mining [[12]. In this paper, we
address the table retrieval task by presenting a new context-
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aware ranking in order to extract a set of top-ranked tables for
a given query.

Many methods in the literature treat tables as documents,
so that document retrieval methods can be applied to table
retrieval [2f], [6]. The performance of table retrieval is im-
proved by using supervised learning that includes features
from tables, queries, and query-table pairs [1]], [6]. In addition,
semantic features are introduced to embed queries and tables
into a semantic space, and then train a supervised model that
captures semantic similarities in addition to traditional features
[13]. However, a major drawback of prior approaches is that
they are based on pretrained embeddings, and they ignore
contextual information within tables in the ranking step. In
order to overcome the limitations of prior methods, we propose
learning a new model for word embeddings of attribute tokens
that is used to predict contextual information of tables in the
ranking phase. We show that the predicted contextual items
can improve table retrieval performance using a collection of
millions of tables from Wikipedia.

In summary, we make the following contributions:

o We build a new model for word embeddings of the tokens
of table attributes using contextual information of every
table. We examine multiple formulations for contexts
used to create embeddings.

o We demonstrate the usefulness of an attribute’s collection
of values (the data tokens) in creating a meaningful
semantic representation of the attribute. We show that
an abstracted model of numerical values can lead to
improvement on retrieval tasks without leading to a large
increase in the number of tokens.

o We take an existing model for ranking document retrieval
that considers partial semantic matches for tokens and
adapt it for better table retrieval performance.

« We predict context of tables using the trained contextual
model, and we use a mixed ranking model that incorpo-
rates the metadata of a table and the additional contexts
in order to calculate the retrieval score.

II. RELATED WORK

A. Word embedding for tables

Words are embedded into low dimensional real-valued
vectors based on the distributional hypothesis [14]. In many
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proposed models, the context is defined as the words that
precede and follow a given target word in a fixed window
[15]-[18]]. Mikolov et al. [19] proposed the Skip-gram model
which scales to a corpora with billions of words.

Recently, word embeddings are used to learn a real-valued
vector representation for tables in different Natural Language
Processing (NLP) tasks. Gentile et al. [20]] proposed an embed-
ding model to address the problem of entity linking within ta-
bles. They create sentences by concatenating attributes and/or
values of the table, and then learn embeddings for the tokens
of these sentences using the Skip-gram model. The learned
embeddings are used to calculate the cosine similarity between
two tables.

Nishida et al. [21] proposed a hybrid deep neural net-
work architecture for table classification. The architecture is
composed of a recurrent neural network (RNN) to encode
a sequence of tokens of each cell. The next component in
the architecture is the attention mechanism from Yang et
al. [22] which extracts important tokens from each cell, and
forms an input volume. The constructed volume is passed
through a Convolutional Neural Network (CNN), and then a
fully connected layer is added to compute the output layer.
The input to the RNN is an embedding layer that represents
each cell token as a real-valued vector. So, after finishing the
training step, an embedding is obtained for every cell token.

Ghasemi-Gol and Szekely [23] introduced an unsupervised
method to embed tables into a real-valued vector for the table
classification task. Their proposed table embedding is based
on cell tokens embedding using four contexts: text within each
cell, text in adjacent cells, text in the corresponding attribute
or header, and text surrounding the table in the web page.
They used random indexing [24f] to calculate the embeddings
of cell tokens.

B. N-gram Language Models

A general model for information retrieval is the N-gram
Language Model (LM), which assigns probabilities to a se-
quence of words. Given a query, a unigram LM is used to
retrieve documents by calculating the probability that each
document would generate the query [25]-[27]. For a query
Q, that is composed of query terms qi,qz,...,q|q|, Where
|Q] is the length of @, the probability of @) given a document
D is given by:

1Ql
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where 6, is the LM estimated for document D and p(g;|04)
is estimated using a unigram LM. In order to avoid assigning
zero probability for unseen words in a document, p(g;|64) can
be estimated using a linear combination of probabilities from
unigram LM and Dirichlet prior smoothing [27]], [28].
Linear interpolation is used to combine multiple language
models in order to estimate a new language model [25], [29].

p(Qlb4) =

In this case, p(w|fy) is given by:
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where L is the number of language models, 6,4, is the i'"
representation of document D, and f3; is the weight associated
with language model 6,4,. The weights (3, are constrained to
sum to 1, so that:

L
> Bi=1,and B; > 0forall 1 <i<L

i=1
C. Ad hoc table retrieval

In a table retrieval task, a table can be considered as a
document, and traditional document retrieval methods can be
applied for table ranking. Cafarella et al. [2], [6] retrieve
relevant documents using web search engines, then tables are
extracted from the highest-ranking retrieved documents. The
simplest approach is to represent a table by a single field
containing all the text associated with the table. The retrieval
score is then calculated using existing retrieval methods, such
as language models or BM25 [30]. A table consists of multiple
fields, and retrieval models for multi-field documents can
be applied for table retrieval. Pimplikar and Sarawagi [_]
proposed a late fusion [31] method for multi-field ranking. In
this case, for a given query, a score is calculated independently
for every field, then a linear combination of the scores is taken.
The final score is given by:

score(Q,T) sz x score(Q, fi) 2)

where @ is a given query, T is a table, f; is the i'" field of
T, and w; is the weight associated with f;.

For supervised ranking of documents, features are grouped
into three categories: document, query, and query-document
features [32]]. In the case of table retrieval, multiple query,
table, and query-table features are proposed in the literature
[1], [|6]. Zhang and Balog [[13|] proposed semantic matching
between queries and tables using various semantic spaces
which are: Word embeddings, Graph embeddings, Bag-of-
entities and Bag-of-categories. The DBpedia knowledge base
is used to construct a vector of zeros and ones for both bag-
of-entities and bag-of-categories. The dimension of bag-of-
entities is equal to the total number of entities in the knowledge
base, where a value of 1 indicates that the entity is mentioned
in the table. It is the same for the bag-of-categories with a
dimension equal to the total number of Wikipedia categories.

The organization of the rest of the paper is as follows. Sec-
tion [[LI| proposes a table retrieval method based on predicting
contexts of tables using new trained word embeddings; Section
illustrates data and query collections used in our approach,
and compares baselines and our algorithm in the table retrieval
task using WikiTables data.



ITI. CONTEXT PREDICTION FOR TABLE RANKING

In this section, we introduce our proposed method to
enhance ranking of tables given a user’s query. Given a table,
we tokenize each attribute to obtain a set of attribute tokens.
The proposed approach has three stages: in the first step, we
build word embeddings for attribute tokens using contextual
information from each table. In the second step, for a given
attribute token of a table, we predict its context using the
trained contextual model and augment the table with this
additional, implicit, and descriptive information. In the third
step, we calculate a score for a given query-table pair in order
to rank and retrieve tables that are related to the query. We
use a mixed ranking model that incorporates the metadata of a
table and the additional predicted context in order to calculate
our score.

Our work differs from the table embeddings discussed in
Section Unlike Gentile et al. [20], our contexts do
not depend on the arbitrary ordering of rows or columns
in the dataset, and we learn a word embedding for attribute
tokens by enlarging the context to cover metadata of tables.
The additional contexts are useful in table retrieval as more
predicted contexts are available when scoring a table against
a query using multi-field ranking approaches. In Nishida et
al. [21], a word embedding of every cell token is obtained after
supervised training of a hybrid model. In our case, we use a
different architecture with unsupervised training when learning
embeddings. The frequency of tokens in tables exhibits a
Zipfian distribution [33]], with a long tail of tokens that only
appear in one or a few tables. If the collection is divided into
training and test sets, many tokens will only appear in one
set or the other. Such a division will lead to many tokens
that only appear in the test set, and therefore do not have
embeddings. Similar to Ghasemi-Gol and Szekely [23]], we
identify multiple contexts from the table. However, a key
difference is that our model distinguishes between the different
contexts, rather than treating them uniformly, and we show that
this leads to more accurate retrieval in Section Also, we
have different notions of context: we do not simply treat the
four cells adjacent to a cell as context, and the only locality
information that is used is that all cells in the header row are
considered context for each other.

A. Word embeddings for attribute tokens

The objective is to learn an embedding for every attribute
token that captures its contextual information inside a table.
We use an adapted Skip-gram model [17] for tables. The
training objective is to learn a real-valued representation for
attribute tokens using contextual information from each table.
Then, the trained model is used to predict additional tokens
that are relevant to the table.

Our model differs from the original Skip-gram model in two
major aspects: training context and vocabulary. In the original
Skip-gram model, the context is based on the surrounding
words of a given word. However, in a table, how to define
context is not so obvious. Clearly, other tokens in the name of
an attribute count as context, but are there other meaningful

contexts? The metadata of a table clearly provides a larger
context for the attributes, and an attribute is also contextualized
by the other attributes that appear in the same table. We
also argue that the cell values provide meaningful contextual
information. For example, an attribute that consisted of 50
two-character values including ‘AZ’, ‘KY’, ‘MS’, ‘WA’ , etc.
should be assigned an embedding that is similar to another
attribute with the same set of values, even if the attributes
shared no name tokens. Thus, the context for an attribute token
is rich, but we argue that these different types of context should
not all be treated uniformly. Levy and Goldberg [34] have
shown that, for word embeddings, differentiating contexts can
lead to embeddings that better express similarity as opposed
to relatedness. Inspired by this work, we use a multi-context
model, so that a token that appears in the metadata has a
different impact than the same token when it appears in a
cell value. Thus, for a given attribute’s token, we have four
different types of contexts: description, values, other tokens
from same attribute, and other tokens from attributes in the
same table. For simplicity, we append a distinct suffix to every
context token in order to distinguish between the different
contexts in the training data.

Our model uses different input and output dictionaries: the
input dictionary contains tokens of attributes extracted from
the collection of tables, and the output dictionary is composed
of tokens from all four types of contexts. More formally, given
a sequence of 7T training attribute tokens ai,ao,as,...,ar,
the objective of our model is to maximize the sum of log
probabilities using our proposed contextual information:

T

Z( Z log p(walaz) + Z log p(wy|ay)

t=1 wq€Dy wy, €V}

+ Z log p(weqlat) + Z lng(“’saWt))
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where a; is a given attribute’s token, D, is the set of descrip-
tion context tokens of a;, V; is the set of values context of
as, OA; is the set of other tokens from attributes in the same
table containing a;, and SA; is the set of other tokens from
same attribute containing a;.

Given an output context w, and input token a;, the Skip-
gram model defines p(wc|a;) using the softmax function.
Computing the softmax probability is expensive because it
requires summing over all the words in the output dictionary.
To address this problem, we estimate the softmax probability
using Noise Contrastive Estimation (NCE) [35], [36]. NCE
reduces the language model estimation problem to a binary
logistic regression classifier that distinguishes between data
and noise.

B. Managing Numerical Cell Values

Numerical values play a more prominent role in tables
than in text documents. For example, 26.9% of cells in the
WikiTables dataset are numeric values, while in a random
sample of 372 tables from data.gov [33]], 58.2% of the cells
are numeric. An attribute’s numeric values can contribute to



its interpretation and thus provide useful context information:
four digit numbers beginning with 19 or 20 are likely to
be years, while in the United States five-digit numbers are
often zip codes and sequences of the form ddd-ddd-dddd are
often phone numbers. However, the number of unique numeric
values in a dataset can be far larger than the number of unique
non-numeric tokens, and adding them to the vocabulary will
lead to an increase in the size of the output dictionary. For
the WikiTables dataset, we obtain 2,401,425 unique tokens
(including numbers) in the output vocabulary. Furthermore,
context should ideally recognize that small numeric distances
reflect similar contexts, and context should not be adversely
impacted by noise or rounding errors. That is, the numbers 998
and 1002 are quite close, as are 3.14 and 3.14159. Likewise,
two attributes with a range of values from 1960 to 2020 should
be considered to have very similar values context even if less
than half of the values appear in both attributes.

A typical approach to handling numbers in word embed-
dings is to replace each digit with a special character, such as
the hash symbol (‘#’). For simplicity, we tokenize using the
same punctuation that we use to tokenize the rest of the text.
Thus, 999-99-9999 becomes the tokens ‘999°, ‘99’ and ‘9999’
and then “#H#  ‘## and ‘#HHHP. This means that regardless
of the number of distinct numerical values, we only add a
number of tokens to the output dictionary that is less or equal
to the length of the longest successive sequence of digits. As
a partial solution to the problem of recognizing numbers that
are close, while keeping the cardinality of numeric tokens
low, we propose a new approach: keep the leading digit of
a number, and only replace other digits by ‘# in order to
refine numerical values context. With this approach, the size of
output vocabulary decreases to 2,032,424, a reduction of about
15%. However, in other datasets, such as those in data.gov,
numbers are more prevalent, and the savings will be more
significant.

C. Table features

We describe a table using three sets of features:
 original description (D,): Set of tokens extracted from
the table metadata such as its title and/or caption,
« original attributes (A4,): Set of tokens extracted from the
header row of the table, and
« original values (V,): Set of tokens extracted from the data
rows of the table (i.e., all rows other than the header).
We augment these features with additional features pro-
duced by our trained model. First, for an attribute token a
in the input dictionary D;, we predict the different contexts
by extracting the top k& words from the output dictionary that
have the highest probabilities. We denote our set of top k
contexts by C%. We divide the predicted contexts into three
categories: description context D., values context V., and
attributes context A.. More formally,

Cr.=D.UV.UA,

Second, the hidden layer H € RWixh of our model, where
W, is the number of attributes tokens, presents a new word

embedding of dimension h for each attribute token. We use
the new word embedding to extract the set of top m closest
tokens, denoted by I,,, to a given attribute token a, using
cosine similarity.

The final predicted context P, is given by:

P.=CyUl,=D.UV.UA UI,

D. Ranking methods for table retrieval

The predicted context P, enables us to augment every table
with additional fields that capture the contextual information
obtained from the original attribute tokens. The additional con-
texts can be combined with original fields, such as title, data,
original attributes, etc., in order to improve multi-field ranking,
and thus table retrieval. We propose using the multiple ranking
mechanisms based on Equation (2)). We use traditional ranking
methods such as BM25 and TF-IDF. The third ranking method,
LM-Ranking, is based on combining language models [29]]. In
other words, we index tables using the contents of the original
fields and additional predicted contexts, then we estimate a
language model for every field, and we combine the estimated
language models using Equation (T)).

The fourth ranking method, Late-avg, is a late fusion
similarity model [13]] based on Equation for multi-field
ranking, but with scores calculated by averaging the cosine
similarity between the embeddings of all pairs of query terms
and terms of field f;. Given an embedding E(-) for a term ¢:

‘Q‘ myg
scorein(Q, 1) = @Lm SO cosine(Elar), B(t;:))
b k=1 j=1

3)
where m; is the length of field fi, q; is the k*" query term
of @, and t;; is the j'" token in f;.

Kenter and de Rijke [37|] proposed a Semantic Text Sim-
ilarity (STS)-based ranking method specifically intended for
short texts. This combines a traditional BM25 formula with
semantic similarity computed from word embeddings. Because
the semantic similarity is computed on query token/field token
pairs, this has aspects of a late-fusion approach. In STS, the
query is assumed to be the short text.

As a simplification of the above approach, we consider a
pure late-fusion approach that only considers the semantic
similarity, and ignores the BM25 aspects. In this, we select
the best matching query term for each table field term and
refer to it as MaxQuery:

m;

scoremq(Q, fi) = ol cosine(E(qx), E(t;i))

Finally, we argue that Kenter and de Rijke’s assumptions
about short text similarity do not apply to the table retrieval
problem. In particular, rather than choosing the best query
token for each field token, we choose the best field token for
each query token. Typically, the set of table tokens will be
much larger than the set of query tokens. A table could be a
good match for a query even if only a portion of the table is
relevant. Our final model, MaxTable is a late fusion similarity



model, but we find the closest table term to each query term
using cosine similarity, and then sum over these similarities:

Q|
scoremt(Q, fz) = kz::l je[IlnaX ] COSiTL@(E(qk), E(tji)) (€]
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In the above ranking methods, the choice of embedding E(+)
depends on which field is being compared to the query. Since
we only apply our embedding approach to attribute tokens,
other fields will contain tokens for which we do not produce
embeddings. For these fields, we use pre-trained fastText [|3§]]
embeddings, which are built from character-level n-grams,
allowing embeddings to be created even for terms that have not
been seen before. Specifically, we use our embeddings on the
original attribute field A,, the predicted context attribute field
A, and the closest tokens I,,,. All other fields (D,,, D.., V,, and
V.) use fastText embeddings for computing similarity. Recall
that the predicted description contexts and value contexts were
produced by our embedding model, so our approach still
contributes to the scores even when fastText embeddings are
used for determining cosine similarity.

IV. EVALUATION
A. Data and query collections

Our dataset is composed of the WikiTables corpus [39]]
containing over 1.6 tables. Each table has five indexable
fields: table caption, attributes (column headings), data rows,
page title, and section title. In addition, each table contains
statistics which are: number of columns, number of rows, and
set of numerical columns of the table. We use the same test
queries that were used by Zhang and Balog [13].

We use Zhang and Balog’s [13] ground truth of query-
table relevance, where every query-table pair is evaluated and
given one of three scores: 0 means “irrelevant”, 1 means
“partially relevant” and 2 means “relevant”. The objective of
the annotators was to use the retrieved tables to create a new
table that fulfills the query. So, for a given query, they needed
to find tables that are useful in forming a single table that
matches the query. By using this task to evaluate a given table’s
relevance, if a table is not used to create the final table, it is
given a relevance 0. If only some values are used from the
table, it is partially relevant. Finally, if blocks of a table are
used, it is considered relevant. The total number of query-table
pairs is 3117. As in Zhang and Balog [13]], in all reported
results of our experiments, 1918 pairs are used for parameter
tuning of multi-field ranking weights, and 1199 pairs are used
as the test collection.

B. Baselines

We compare the performance of our proposed model with
two baselines:

Single-field document ranking: A table is considered as a
single field document by concatenating a subset of WikiTables
fields: table caption, attributes, data rows, page title and section
title (as in [2], [6]). In the result tables, we identify which fields
were used. Then a language model is estimated for the formed

document in order to rank a given table against the query. We
can also calculate the score of a query-table pair using word
embedding-based ranking methods from Section

Multi-field document ranking: In a multi-field ranking
scenario, a table is defined using five fields: page title, section
title, table caption, attributes and table body or values. We
compare our method against two baselines in the category
of multi-field document ranking using word embedding. The
first multi-field ranking method, MultiField-P, is based on
the pretrained fastText word embedding as in Zhang and
Balog [13] when calculating cosine similarity. In the second
multi-field ranking method, MultiField-G, we use a word
embedding trained by the adapted Skip-gram model to the
context introduced by Ghasemi-Gol and Szekely [23]. Field
weights are optimized using grid search.

We conduct an ablation study that evaluates five variations
of our model. The first variation is called SCON (single
context), in which we treat all contexts as one context. In
other words, we do not append a distinct suffix to every context
token to distinguish between different contexts. The other four
variations are based on different formulations of the values
context V; for a given attribute a;. In the NOVAL variation,
we ignore the values context by setting V;=0. In the NONUM
variation, V; includes only string contexts. In the HASHNUM
variation, we replace each digit with the hash symbol (‘#’), but
otherwise use all value tokens and multiple contexts. Finally,
the MCON variation is our full model, where we keep the
leading digit for numbers and replace other digits by ‘#’.
In HASHNUM and MCON, V; includes both numerical and
string value contexts. In the experimental results section, we
report results from all five variations.

C. Experimental Setup

We use the full set of 1,652, 771 tables to train our embed-
ding model. For the description context D, of a given attribute
token a;, we concatenate three fields from WikiTables: page
title, section title and caption.

We set the dimension of word embeddings h to 100, and
the number of labels used in NCE estimation to 10,000. We
train our model for 3 epochs with a batch size of 100. We use
SGD to minimize the loss function, and update the weights
of our model. We set the learning rate to 0.01. The model is
implemented using TensorFlow, with Tesla T4 GPU (memory
Clock Rate: 1.59 GHz). For context prediction, we set the size
of Cy, k, and the size of I,,,, m, to 20. In order to calculate
the retrieval score for query-table pairs by combining language
models, we use the implementation in Hasibi et al. [40] which
is based on Elasticsearch.

D. Experimental results

1) Model statistics: We start by comparing our models
in term of sizes of input dictionary, output dictionary, and
training data (number of target-context pairs). The statistics
are shown in Table For all five variations, we have the
same size of input vocabulary. For output vocabulary, MCON
has the largest vocabulary, as it includes multiple contexts



TABLE I: Table retrieval evaluation results using MaxTable

Method Fields NDCG@5 | NDCG@10 | NDCG@15 | NDCG@20
Single-field document ranking all 0.4715 0.4832 0.5155 0.5404
Single-field document ranking | cell values 0.3292 0.3775 0.4245 0.4657
Single-field document ranking | description 0.4632 0.4912 0.5330 0.5462
Single-field document ranking attributes 0.3204 0.3545 0.4137 0.4584

MultiField-P all 0.4794 0.4930 0.5298 0.5473
MultiField-G all 0.4610 0.4818 0.5051 0.5386

SCON all 0.4824 0.5022 0.5343 0.5494

NOVAL all 0.4813 0.5021 0.5323 0.5491

NONUM all 0.4862 0.5037 0.5368 0.5505

HASHNUM all 0.4902 0.5043 0.5367 0.5505

MCON all 0.5088 0.5117 0.5460 0.5587

and numerical context. The output dictionary size does not
influence the training time because we use NCE to estimate the
softmax probabilities. The number of parameters for MCON
is significantly larger than NOVAL because of the difference
in the size of output vocabulary. So, MCON allocates more
memory than NOVAL to update model parameters. The train-
ing time is directly related to the number of target-context
pairs. In our experiments using a single Tesla T4 GPU, the
average training time for 4000 steps each with a batch size
of 100 is 34.67 seconds. Our models are trained for three
epochs. So, for MCON, we need 14.22 hours for one epoch
training and the total training time is 42.66 hours. Because
training depends directly on the number of target-context pairs,
NOVAL is significantly less, at 13.39 hours.

TABLE II: Statistics of our models

Here, the MaxTable ranking method is shown to be the most
effective ranking for our embedding and context prediction
approach. Aggregating scores using the sum of maximum
similarities is more effective than using average similarity.
Late-avg is stricter as it requires a query term to have large
similarity with multiple tokens of a given field in order to
obtain high score. On the other hand, for MaxTable, a high
similarity between a query term and one token from a given
field is enough to obtain high similarity score for a given
field in a table. Among the ranking methods that are not
based on word embedding (LM-Ranking, BM25, and TF-IDF),
LM-Ranking achieves higher performance at all NDCG cut-
off thresholds. Note, that for our table features, STS actually
performs worse than plain BM25, while simply using its
approach to semantic similarity gets closer to BM25.

TABLE III: MCON table retrieval results

H Model  Input dict  Output dict  Target-context pairs H
SCON 118,421 1,608,455 590,661,355
NOVAL 118,421 415,272 185,390,306
NONUM 118,421 1,997,633 432,705,346
HASHNUM 118,421 2,025,698 590,661,355
MCON 118,421 2,032,424 590,661,355

2) Ranking results: We evaluate the performance of our
proposed method and baselines on the table retrieval task using
Normalized Discounted Cumulative Gain (NDCG) [41]] at cut-
off thresholds 35, 10, 15, and 20. All NDCG results are reported
using the TREC evaluation software, trec_evalP_-] We index
tables from the WikiTables dataset using the original fields
and predicted contexts. We report the retrieval results using
our proposed models and multiple baselines.

In Table [I, we show the NDCG results of table retrieval
using the MaxTable ranking method (results for other ranking
methods showed similar trends). We show that MultiField-P
leads to better performance than single-field document rank-
ing. From the results of single-field document ranking us-
ing only cell values, we observe that the cell value-based
single-field document ranking is not effective in ranking query-
table pairs. The additional predicted contexts using our MCON
model has the best performance for all NDCG metrics.

In Table we summarize the results of all ranking
approaches from Section using our best model, MCON.

Uhttps://trec.nist.gov/trec eval/ trec_eval.8.1.tar.gz

Method NDCG@5 NDCG@10 | NDCG@15 NDCG @20
BM25 0.4545 0.4854 0.5186 0.5449
TF-IDF 0.4316 0.4746 0.5073 0.5344
LM-Ranking 0.4755 0.4976 0.5316 0.5548
Late-avg 0.4740 0.5025 0.5241 0.5464
STS 0.4323 0.4502 0.4863 0.5158
MaxQuery 0.4642 0.4726 0.5087 0.5310
MaxTable 0.5088 0.5117 0.5460 0.5587

V. CONCLUSIONS

We have shown that using multiple, differentiated contexts
can result in more useful attribute embeddings. When the
MaxTable ranking method is used for the table retrieval
task, our MCON system has up to 5.47% improvement in
NDCG@S5 over a method that uses the same context fields but
treats them as the same context. Likewise, we have shown
that the data values of an attribute provide useful context
information: our full system always performs better than the
version that does not include values as context by as much as
5.71% in NDCG@S5. Finally, we have shown that our simple
treatment of numeric values also leads to better embeddings:
when numeric values are dropped, NDCG@5 scores drop by
up to 4.44%.

This work leaves many avenues for further investigation.
Our evaluation method focused on the indirect application
of attribute embeddings to the table retrieval problem. So,
it is possible to examine the quality of embedding in the



more direct task of determining attribute similarity. However,
doing so will require the creation of a ground truth dataset.
Finally, some researchers have focused on using learning-to-
rank methods for document and table retrieval [[13|], [42]-[44],
and it would be interesting to see how such methods would
benefit from our embedding approach.
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