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Abstract—Multiple instance regression (MIR) operates on a
collection of bags, where each bag contains multiple instances
sharing an identical real-valued label. Only few instances, called
primary instances, contribute to the bag’s label. The remaining
instances are noise and outliers observations. The goal in MIR
is to identify the primary instances within each bag and learn a
regression model that can predict the label of a previously unseen
bag. In this paper, we present an algorithm that uses robust
fuzzy clustering with an appropriate distance to learn multiple
linear models from a noisy feature space simultaneously. We
show that fuzzy memberships are useful in allowing instances
to belong to multiple models, while possibilistic memberships
allow identification of the primary instances of each bag with
respect to each model. We also use the possibilistic memberships
to identify the optimal number of regression models. We evaluate
our approach on a series of synthetic data sets. We show that
our approach achieves higher accuracy than existing methods.

Index Terms—Multiple instance regression, Fuzzy clustering,
Possibilistic clustering, Multiple model regression.

I. INTRODUCTION

Unlike classical supervised learning where every object is
represented by a single feature vector and a label, in multiple
instance learning (MIL) [1], [2], an object contains a set
of instances, called a bag, with a single label. Labels are
available only at the bag level and labels of the individual
instances are unknown. The label of each bag cannot be simply
propagated to all of its instances as a significant number
of instances can be irrelevant to the object they describe.
This many-to-one relationship between instances and data
labels produces an inherent ambiguity in determining which
instances in a given bag are responsible for its associated label.
MIL was formalized in 1997 by Dietterich et al. providing a
solution to drug activity prediction [1]. Ever since, MIL has
increasingly been applied to a wide variety of tasks including
drug discovery [3], image analysis [4], [5], [6], content-based
information retrieval [7], time series prediction [2], landmine
detection [8], information fusion [9], [10], and remote sensing
[11].

As in classical learning, data labels in MIL can be cate-
gorical or real-valued. Categorical labeling leads to Multiple
Instance Classification (MIC), while real-valued labeling leads
to Multiple Instance Regression (MIR). Most of the existing
work on MIL has focused on MIC. There are different
assumptions in MIC. The most common one assumes that a
bag is classified negative if all of its instances are negative
and positive if at least one of its instances is positive. Many
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algorithms have been proposed to solve MIC problem in the
past two decades. Examples include APR [1], MILES [5],
MILIS [12], SVM [13], Diverse Density [3], MI kernels [14],
EM-DD [15], Citation-kNN [16] and BP-MIP [17], [18].

In Multiple instance Regression (MIR), bags have real-
valued labels and the objective is to learn a regression model
that can predict the label of a bag from its content. There
is no prior knowledge of the relevant instances within each
bag. MIR has received much less attention than MIC and only
recently few algorithms have been proposed.

II. RELATED WORK

The two simplest approaches to MIR, that are commonly
used as baselines (e.g., in [19], [20], [11]), are the Instance-
MIR and Aggregated-MIR. In Instance-MIR, every instance
within a bag is treated as a relevant examplar and inherits
the bag’s label. Then, a model is trained using traditional
supervised regression techniques. To predict the real-valued
label of an unseen bag, the learned regression model is
applied to each one of its instances and the final bag label
is computed by aggregating (e.g min, max, mean, median) the
learned instances’ labels. In Aggregated-MIR, the aggregation
is applied at the feature level. First, features of all instances
within a bag are combined to form a meta-data. Then, a
standard regression method is applied to the meta-data. To
predict the label of an unseen bag, the aggregation is first
applied to form the meta-data and then the learned regression
model is used to predict the label of the testing bag based on
the meta-data.

Primary instance regression (PIR) [21] is one of the earliest
MIR that maintains the bag structure. It assumes that each
bag has one true instance, called primary instance, and that
the remaining instances are noisy observations. PIR is an
iterative algorithm that uses an EM-based approach to alternate
between selecting the primary instances and fitting a linear
regression to these instances. Like most MIR methods, PIR
does not provide a mechanism to predict the label of an unseen
bag. Typically, as in the instance-MIR, the predicted value of
a test bag is an aggregation of its instances’ output.

Motivated by the fact that bags contain items drawn from
different distributions, MI-ClusterRegress [19] uses a cluster-
ing step to partition the data into a predefined number of
clusters. Instances that are relevant to each cluster, called
exemplars, are identified and used to learn a regression model



for each cluster using traditional simple instance regression
techniques. The cluster with the best fitting error is identified
as the “prime” cluster and its model is assumed to have
generated the bags’ labels. The label of a previously unseen
bag is an aggregation of the labels of its instances that are
assigned to the prime cluster.

In this paper, we introduce a novel MIR framework, called
Robust Fuzzy Clustering for Multiple instance Linear Re-
gression (RFC-MILR). We show that, for multiple instance
data, regression models can be identified as clusters when
appropriate features and distances are used. RFC-MILR uses
two types of membership functions for each instance. The
first one is a fuzzy membership and is needed to identify the
primary instances within each bag. The second membership is
a possibilistic function and is needed to identify non-primary
instances as noise and outliers to reduce their influence on the
learned regression parameters.

The organization of the rest of the paper is as follows.
Section III proposes a robust clustering to learn multiple
linear regression models for MIR; Section IV illustrates the
steps of the proposed algorithm using an illustrative example
and compares previous and proposed MIR algorithms using
synthetic datasets.

III. ROBUST CLUSTERING TO LEARN MULTIPLE LINEAR
REGRESSION MODELS

Let D = {B;,j = 1...Np} be a collection of Np bags,
where Bj = {(bij,y;),i = 1...n;}, bij € R% is the attribute
vector representing the ith instance from the jth bag, y; is the
real-valued target value of the jth bag and n; is the number of
instances in the j*" bag. The instances b;; that determine the
label y;, called primary instances, are unknown. The objective
of MIR is to identify the primary instances in every bag,
learn the regression model, and be able to predict the label
of previously unseen bags.

In the following, we propose a new approach, called Robust
Fuzzy Clustering for Multiple Instance Linear Regression
(RFC-MILR). RFC-MILR performs clustering and multiple
linear model fitting simultaneously. RFC-MILR has four main
properties. First, instead of using clustering to partition the
instances in the feature space regardless of the labels of their
bags as in MI-ClusterRegress [19], we combine features and
labels and use clustering, with an appropriate distance, to
identify multiple local linear regression models. Second, we
use a robust clustering approach so that non-primary instances
(that incorrectly inherit the label of the bag they belong to)
can be treated as noise and outliers to minimize their influence
on the learned regression parameters. Third, we use fuzzy
clustering so that each instance can contribute to each local
regression with a fuzzy membership degree. Finally, we use
properties of the possibilistic memberships to find the optimal
number of regression models.

Let j; = [bji,yi) € RA*! represent the concatenation of
the j*" instance from the i*” bag and the label of its bag. Recall
that labels are not available at the instance level and that y;
is valid only for the primary instances of bag ¢. Thus, many

of the x;;’s can have an irrelevant y;. We combine x;; from
all training bags into D = {xj;,i =1...Ng,j =1...n;}.
To simplify notation, we assume that all bags have the same
number of instances n; = n for i = 1... Ng, and we rewrite
D = {z;;i = 1...N}, where N = n x Np. Next, we
show how clustering could be used to identify the primary
instances from all of the IV instances and learn the MIR model
simultaneously.

A. Robust Clustering for MIR
The fuzzy c-means (FCM) [22] algorithm minimizes

C N
Tp =YY (uf)"dist}; (1)

i=1 j=1
subject to the constraint:

C
uf;- € [0,1] for all 4, j; and Zuf; =1forallj. (2
i=1

In (1), C is the number of clusters, dist;; is the distance
from x; to cluster ¢, m > 1 is a weighting exponent called
the fuzzifier, and v} is the fuzzy membership of x; in cluster
1.

The distance dist;; used in (1) controls the type and
shape of clusters that will be identified. Various distances
have been proposed in the literature to identify ellipsoidal,
linear, and shell clusters such as lines, circles, ellipses, and
general quadratics [23], [24]. In this paper, we assume that the
underlying regression model is linear and we use (1) to identify
multiple linear models. In particular, we use a generalization
of the distance in [22], [25] and let:

d+1
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disty; —szk((% ¢i) - ein)’, 3)
k=1

where ¢; is the center of cluster 4, e;; is the k! unit
eigenvector of the covariance matrix X; of cluster ¢. The
eigenvectors are assumed to be arranged in ascending order of
the corresponding eigenvalues ;. In (3), v;; is a parameter
that controls the contribution of the distance along each
eigenvector to the total distance. In this paper, we let
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[T A
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Aik ’
that is, more importance will be given to distances projected
on the eigenvectors associated with the smaller eigenvalues.
Optimization of (1) with dist;; in (3) subject to (2), using
alternate optimization, results in an iterative algorithm that
alternates between updating the fuzzy memberships using:

1
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and the center c; and covariance X; of cluster ¢ using
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The objective function of the FCM in (1) is known to be
sensitive to noise and outliers, and thus, is not suitable for the
considered MIR application where we know a priori that the
data is very noisy as non-primary instances and their labels
will act like noise. Instead, we use the possibilistic ¢ means
(PCM) [26], which relaxes the constraint in (2) and minimizes
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In (8), uf; € [0,1] is a possibilistic membership degree that is
not constrained to sum to 1 across all clusters. It is close to
0 for samples that are considered outliers, and close to 1 for
inliers.

Optimization of (8) also results in an iterative algorithm that
P

alternates between updating u;; using
) -1
dist;, ——
ul = |1+ (Tw)m,—l 9)

and the center ¢; and covariance X; as in (6) and (7) respec-
tively. In (9), n; is a cluster resolution parameter that could be
fixed a priori or updated in each iteration using the distribution
of the data within each cluster [26].

Since the PCM does not constraint the memberships uf-;
to sum to 1, it can result in several similar or even identical
clusters. We use this feature to identify the optimal number of
regression models [27]. We simply start with an over specified
number of clusters, then identify and merge similar ones. Two
clusters ¢ and k are considered similar if the possibilistic
memberships of all points in the two clusters are similar. These
clusters can be easily identified and merged if

M=

5 Juf, — i

N N
AR |ujk|
k=1 k=1

1

<Oy (10)

In (10), ;7 is a threshold constant.

Currently, we assume that the underlying regression model
is linear and thus, it can be captured by one linear cluster.
Consequently, if the algorithm identifies more than one cluster,

say ¢ > 1, we need to select the “optimal” cluster, p. We
simply select the cluster that minimizes the fitting errors, i.e,

N
p=arg min /{51’ = Z(ufj)mdistfj} (11)

i=1,...c j=1

The primary instances of cluster p, denoted PP, are defined
as the set of inliers to this cluster, that is,

PP ={z;,j=1...N|u] >6p} (12)

In (12), 0p is a constant typically set to 0.1. The primary
instances of cluster p are also considered the primary instances
of the entire data D, i.e P = PP.

The linear regression model parameters can be identi-
fied from the cluster center ¢, and covariance matrix /.

Let €min = [€hins--- ed+1] be the eigenvector associated

) ¥min
with the smallest eigenvalue M., of X, and let z =
[z1,...,24,y] € P be a primary instance. The fact that z

and ¢, belong to the same linear regression model leads to

emin-(T —cp) =0, (13)
or
€min-T = €min-Cp- (14)
Decomposing x into the instance feature vector [x1, ..., x4]
and its label y, we obtain
d
d+1 k
emtny + Z eminxk = emin'cp (15)
k=1
Solving for y in (15), we obtain the regression model:
Emin-Copt efm'n
Y= f(I) = €d+1 - d+1 Tk (16)

min k=1 “min

The resulting RFC-MILR algorithm is summarized in Al-
gorithm 1.

B. Label Prediction

Primary instances in the training data can be identified
using (12) as the inliers, i.e points that have high possibilistic
membership. For testing, this process is not as applicable since
labels are needed to assign new memberships. Instead we use
the following approach.

Let B! = {zf ... 2%} be a test bag with N instances. First,
for each 2! € B!, we identify the closest primary instance
(from training data) x” € P. Then, we assume that y!, the
label of xF, is a good initial estimate of the label of z! and
use [zt, yF’] to estimate the possibilistic membership uf of !
in the regression model f. The primary instance of test bag B?
is identified as the instance that has the highest possibilistic
membership, i.e.

Ty = {al [0 = max WFY A7)
Finally, test bag B! is labeled using
§(B") = f (@prim) (18)
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Algorithm 1 The RFC-MILR Algorithm
1: procedure RFC-MILR(D,C,m)
2: Inputs:
3: D: Training data
4: C': an overestimated number of clusters
5: m: fuzzifier

6: Outputs:

7: f: learned regression model

8: P: set of primary instances

9: initialize centers

10: % start with fuzzy memberships to get initial models
11: for few (10) iterations do

12: update centers using (6)

13: update covariance matrices using (7)

14: update fuzzy memberships using (5)

15: end

16: % Continue with possibilistic membership to refine the

models by ignoring noise and outliers

17: repeat

18: update centers using (6)

19: update covariance matrices using (7)

20: update possibilistic memberships using (9)

21: until centers and covariances do not change

22: Merge similar clusters using (10)
23: if number of remaining cluster ¢/ > 1 then
24: select “optimal” cluster using (11)

25: Identify P, the set of primary instances using (12)
26: Identify regression model using (16)

We should note here that it is possible to select multiple
primary instances for each test bag (e.g all instances with
possibilistic membership above a threshold). In this case, the
label of B! can be taken as the average of the labels of all
primary instances.

IV. EXPERIMENTAL RESULTS

To validate the proposed MIR and evaluate its performance,
we generate a series of synthetic multiple instance data sets
with linear models. We vary the dimensionality of the feature
space, the number of instances per bag, and the noise level. We
compare the results of RFC-MILR with 4 existing MIR algo-
rithms. These are the MI-Cluster Regress [19], the Instance-
MIR and Aggregated-MIR [19], [20], and the Primary-MIR
[21].

A. Synthetic datasets
First, we generate the instances features, b;; € IRd, using

b =t;+e,i=1--+,Ng, and j=1,---,n; (19
where t; is the primary instance of bag, B;, generated from
a d-dimensional Gaussian distribution with zero mean and
covariance =10I%%? In (19), € is a noise term added
to the features. It is generated using a normal distribution
NF(uF =0, "=cF19). As the noise level increases, b;;

will divert from being a primary examplar to an irrelevant
instance.
The label of each bag , B;, is generated using

yi = h(t;) +€f, (20)
where h() is a linear d-dimensional function. We use
d
h(x) = Z aRT Q21
k=1

where a; are constant coefficients. In (20), EZL 1S a noise
term, added to the true label. It is generated from a normal
distribution N (2=0, o).

Using the above strategy, we generate multiple data sets by
varying:

1) the dimensionality of the feature space, d from 1 to 10.

2) The noise level added to the features in (19). We let

F (22)

o' =k xaf,
with 0f'=0.1 and k; varies from 1 to 100.
3) The noise level added to the bags’ labels in (20). We let

ol =ky x o, (23)

with 0§=0.05 and ko varies from 1 to 25.
4) The number of instances per bag, n;, from 5 to 100.

For each set of parameters, we create 10 linear models by
generating random coefficients aj (used in (21)) . For each
model, we generate one data collection that includes 100 bags,
i.e. Npg=100.

B. Illustrative Example

First, we use a simple 1-Dim data to illustrate the different
steps of the proposed MIR approach. The true model is h(z) =
6z, and each bag has 5 instances. For the noise levels, we use
k:1:1000 and k‘2:2.

The data is displayed in figure 1(a) where the z-axis repre-
sents the 1-D feature of the instances and the y-axis represents
the label of each bag (all instances in one bag have the same
y value as they share the same label). All primary instances
are displayed as filled blue circles and the remaining ones are
displayed as red ’x’. Recall that in MIR this information is
not available, and that we use it here for illustrative purposes
only. Using C'=3, figure 1(b) displays the 3 initial clusters
obtained after running the RFC-MILR for few iterations with
fuzzy memberships. Points that belong to different clusters
are displayed with different symbols and colors. Figure 1(c)
displays the results after switching from fuzzy to possibilistic
memberships and running the algorithm for 3 iterations. As
it can be seen, RFC-MILR started identifying noisy instances
(displayed as black circles) and the 3 linear clusters started
converging to the same true model. Figure 1(d) displays the
final results after the clusters became identical and got merged
into one using (10). Points with high possibilistic memberships
(> 0.9) are located along the linear model. These points will
be considered the primary instances. All others, will be treated
as irrelevant ones.
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Fig. 1. Illustrations of the steps of RFC-MILR: (a) Example of MIR data, (b) Result of fuzzy clustering, (c) Result of possibilistic clustering after 3 iterations,

(d) Result of RFC-MILR after merging similar clusters

C. Results

To compare the performance of the different MIR algo-
rithms, for each data set, we compute the mean square error
(MSE) using:

1 &
MSE = - > (i —9(Bi)?,

B

(24)

where y; is the true label of bag i and y(B;) is the label
estimated using the different MIR algorithms.

For all data sets, we set the initial number of models C to
10, 6,7 in (10) to 0.1, and fuzzifier m to 2. The value of #; in
(9) is estimated using the average fuzzy intra-cluster distance
of cluster 7 as recommended in [26].

In the following experiments, unless stated otherwise, we fix
the k1 value, used to control the level of noise added to the
instances (22) to 10. We also fix ko, used to control the noise
added to bags’ labels (23) to 10. The number of instances per
bag, n;, and the dimensionality of the instance space, d, to 5
and 1 respectively.

In the first experiment, we vary the noise level added to
the bags’ labels by increasing ko in (23) from 1 to 25. For
each value of ko, we generate 10 data sets using 10 linear
models that use random coefficients ay’s (refer to (21)). The
results of this experiment are displayed in Figure 2 where for
each value of ky, we display the mean MSE averaged over
the 10 random models. We also display the variance of the
MSE as a vertical error bar. As it can be seen, RFC-MILR
has the lowest error. Moreover, the results of the 10 random
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varying the noise level added to the bags’ labels in (20)

3
=—RFC-MILR
2.5 | —MI-CLusterRegress
Instance-MIR
) Aggregated-MIR
| | == Primary-MIR
Ll
0 1.5}
=
1 L
0.5}
0 . \
0 20 40 60 30 100
k
1
Fig. 3. Comparison of RFC-MILR with previous MIR algorithms when

varying the noise level added to the features in (19)

models are consistent as indicated by the low MSE variations
across the random models. In a second experiment, we vary
k1 from 1 to 100. The results are displayed in figure 3 where
the proposed RFC-MILR has the lowest MSE average and
variation.

In a third experiment, we vary the number of instances per
bag, n; from 5 to 100. In general, adding more instances
increases the number of irrelevant instances and makes the
MIR problem more challenging. The results of this experiment
are displayed in Figure 4.

As it can be seen, the proposed RFC-MILR algorithm is
very robust even in the presence of a large number of irrelevant
instances. On the other hand, for all other 4 algorithms
the average MSE increases significantly as more irrelevant
instances are included in each bag.

In a fourth experiment, we vary the dimensionality of the

—RFC-MILR
— MI-ClusterRegress
3 =Primary-MIR

I Aggregated-MIR
Instance-MIR

% 20 40 60 80

100

Fig. 4. Comparison of RFC-MILR with previous MIR algorithms when
varying the number of instances per bag

=——RFC-MILR
=Primary-MIR

4; Aggregated-MIR
Instance-MIR

= MI-ClusterRegress

Fig. 5. Comparison of RFC-MILR with previous MIR algorithms when
varying the dimensionality of the feature space

instances, d, from 1 to 10. The results are displayed in Figure
5.

As for the previous experiments, the proposed RFC-MILR
has the lowest MSE values.

V. CONCLUSIONS

We proposed a new approach to multiple instance regression
based on robust clustering. By combining the bags instances
and labels, and using an appropriate distance that measures
the deviation of a point from a linear model, we showed that
a possibilistic clustering algorithm can be used to estimate
the regression model in a MIR setting. More importantly,
we showed that the possibilistic memberships can be used
to identify the primary instances and the irrelevant instances
within each bag. Using several synthetic data sets with known
structure and different levels of noise and difficulty, we showed
that our approach achieves higher accuracy than state of the
art methods.
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Currently, we assume that the regression model is linear and
after clustering, we identify a single model that has instances
from the maximum number of distinct bags and minimizes
the fitting error. We are currently investigating two strategies
to generalize our approach to non-linear regression. The first
one is based on the assumption that a non-linear model can
be approximated by multiple piecewise linear models. The
second approach modifies the distance measure used within
the clustering objective function to represent the fitting error
with respect to a non-linear model.

ACKNOWLEDGMENT

This work was supported in part by U.S. Army Research
Office Grants Number W911NF-13-1-0066 and W911NF-14-
1-0589. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Office, or the U.S. Government.

REFERENCES

[1] T. Dietterich, R. Lathrop, T. Lozano-Pérez, Solving the multiple instance
problem with axis-parallel rectangles, Artificial Intelligence 89 (1997)
pp- 31-71.

[2] O. Maron, Learning from ambiguity, Ph.D. thesis, Massassachusetts
Institute of Technology (1998).

[3] O.Maron, T. Lozano-Pérez, A framework for multiple-instance learning,
Advances in Neural Information Processing Systems 10 (1) (1998) pp.
570-576.

[4] R. Rahmani, S. A. Goldman, MISSL: Multiple-instance semi-supervised
learning, in: Proceedings of the 23rd international conference on Ma-
chine learning, ACM, 2006, pp. 705-712.

[5] Y. Chen, J. Bi, J. Z. Wang, MILES: Multiple-instance learning via
embedded instance selection, IEEE Transactions on Pattern Analysis
and Machine Intelligence 28 (12) (2006) pp. 1931-1947.

[6] C. Yang, M. Dong, F. Fotouhi, Region based image annotation through
multiple-instance learning, in: Proceedings of the 13th annual ACM
international conference on Multimedia, ACM, 2005, pp. 435-438.

[7]1 C. Zhang, X. Chen, W. B. Chen, An online multiple instance learning
system for semantic image retrieval, in: Ninth IEEE International
Symposium on Multimedia Workshops (ISMW 2007), 2007, pp. 83—
84.

[8] A.Karem, H. Frigui, A multiple instance learning approach for landmine
detection using ground penetrating radar, in: 2011 IEEE International
Geoscience and Remote Sensing Symposium, 2011, pp. 878-881.

[9] A. Khalifa, H. Frigui, Fusion of multiple algorithms for detecting buried

objects using fuzzy inference, in: Proc. SPIE, Vol. 9072, 2014, pp.

90720V-90720V-10.

A. B. Khalifa, H. Frigui, A multiple instance neuro-fuzzy inference sys-

tem for fusion of multiple landmine detection algorithms, in: 2015 IEEE

International Geoscience and Remote Sensing Symposium (IGARSS),

2015, pp. 4312-4315.

Z. Wang, L. Lan, S. Vucetic, Mixture model for multiple instance

regression and applications in remote sensing, IEEE Transactions on

Geoscience and Remote Sensing 50 (6) (2012) pp. 2226-2237.

Z. Fu, A. Robles-Kelly, J. Zhou, Milis: Multiple instance learning

with instance selection, in: IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 33, no. 5, 2011, pp. 958-977.

S. Andrews, I. Tsochantaridis, T. Hofmann, Support vector machines

for multiple-instance learning, in: In S. Becker, S. Thrun, and K.

Obermayer, Eds. Advances of Neural Information Processing Systems

15, Cambridge, MA: MIT Press, 2003, pp. 561-568.

T. Girtner, P. Flach, A. Kowalczyk, A. Smola, Multi-instance kernels,

in: In Proceedings of the 19th International Conference on Machine

Learning, Sydney, Australia, 2002, pp. 179-186.

Q. Zhang, S. Goldman, Em-dd: an improved multi-instance learning

technique, in: T.G. Dietterich, S. Becker, and Z. Ghahramani, Eds.

Advances in Neural Information Processing Systems 14, Cambridge,

MA: MIT Press, 2002, pp. 1073-1080.

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]
[26]

[27]

J. Wang, J.-D. Zucker, Solving the multiple-instance problem: a lazy
learning approach, in: In Proceedings of the 17th International Confer-
ence on Machine Learning, San Francisco, CA, 2000, pp. 1119-1125.
Z.-H. Zhou, M.-L. Zhang, Neural networks for multi-instance learning.
Technical Report, AI Lab, Computer Science and Technology Depart-
ment, Nanjing University, Nanjing, China, 2002.

M.-L. Zhang, Z.-H. Zhou, Improve multi-instance neural networks
through feature selection, in: Neural Processing Letters, vol.19, no.l1,
2004, pp. 1-10.

K. L. Wagstaff, T. Lane, A. Roper, Multiple-instance regression with
structured data, in: 2008 IEEE International Conference on Data Mining
‘Workshops, 2008, pp. 291-300.

Z. Wang, V. Radosavljevic, B. Han, Z. Obradovic, S. Vucetic, Aerosol
optical depth prediction from satellite observations by multiple instance
regression, in: Proceedings of the 2008 SIAM International Conference
on Data Mining, 2008, pp. 165-176.

S. Ray, D. Page, Multiple instance regression, in: Proceedings of the
Eighteenth International Conference on Machine Learning, ICML 01,
Morgan Kaufmann Publishers Inc., 2001, pp. 425-432.

J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, Kluwer Academic Publishers, Norwell, MA, USA, 1981.
H. Frigui, R. Krishnapuram, A comparison of fuzzy shell-clustering
methods for the detection of ellipses, IEEE Transactions on Fuzzy
Systems 4 (2) (1996) pp. 193-199.

F. Hoppner, F. Klawonn, R. Kruse, T. Runkler, Fuzzy Cluster Analysis:
Methods for Classification, Data Analysis and Image Recognition, John
Wiley and Sons, England, 1999.

R. N. Dave, Use of the adaptive fuzzy clustering algorithm to detect
lines in digital images, in: Proc. SPIE, Vol. 1192, 1990, pp. 600-611.
R. Krishnapuram, J. Keller, A possibilistic approach to clustering, Fuzzy
Systems, IEEE Transactions on 1 (2) (1993) pp. 98-110.

K. R. Frigui H., A robust algorithm for automatic extraction of an
unknown number of clusters from noisy data, Pattern Recognition
Letters 17 (12) (1996) pp. 1223-1232.

2018 IEEE International Conference on Fuzzy Systems (FUZZ)



		2018-10-10T17:11:48-0400
	Preflight Ticket Signature




