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Abstract—Ad hoc table retrieval is the problem of identifying
the most relevant datasets to a user’s query. We present an
approach to the problem that builds a knowledge graph by
combining information about the collection of tables with external
sources such as WordNet and pretrained Glove embeddings.
We apply multi-relational graph convolutional networks to learn
embeddings for the knowledge graph nodes and utilize three
different methods to create vectors representing the tables and
queries from these embeddings. We create a novel learning-to-
rank neural architecture that incorporates the multiple embed-
dings in order to improve table retrieval results. We evaluate
our approach using two large collections of tables from public
WikiTables and Web tables data, demonstrating substantial
improvements over state-of-the-art methods in table retrieval.

Index Terms—Knowledge Graph, Table retrieval, Graph Con-
volution Networks, Neural networks, Learning to rank.

I. INTRODUCTION

Knowledge graphs represent human knowledge in structured
form using fact triples (subject, predicate, object) indicating
the relations between entities. Many approaches have been
proposed to learn representations for entities and relations in
knowledge graphs [1]. Recently, researchers have focused on
a new direction called graph neural networks [2] to solve mul-
tiple tasks [3]. Graph neural networks capture rich relational
structures and encode the global structure of a graph in low
dimensional feature vectors known as graph embeddings. The
Graph Convolutional Network (GCN) [4], which is a simple
and effective graph neural network, can capture high order
neighborhood information to learn representations of nodes
in a graph. Schlichtkrull et al. [5] show that an extension
of the GCN framework, known as R-GCN, can be applied
on knowledge graphs to learn representations for graph nodes
and relations. In link prediction, R-GCN can be considered as
an autoencoder consisting of an encoder that computes node
representations, and a decoder function that predicts the scores
of edges, such that known facts can be recalled and previously
unknown facts can be inferred.

Ad hoc table retrieval, i.e., finding tables relevant to a search
query, is an important problem because there are a vast array
of tabular datasets available online, but it is difficult for users
to identify tables that best meet their needs. Researchers have
focused on utilizing the knowledge contained in tables in
multiple tasks including augmenting tables [6], [7], extracting
knowledge from tables [8], table retrieval [7], [9]–[12], and
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semantic labeling [13], [14]. Tables can be considered as doc-
uments, so that document retrieval methods can be applied to
table retrieval [7], [9]. Prior research has shown that classical
bag-of-words based models are not effective in capturing fine-
grained contextual structures for information retrieval, and the
same is true for table retrieval. Supervised learning, based
on hand-crafted features from tables, queries, and query-table
pairs [6], [9], has resulted in the best performing table retrieval
systems. Building on this, Zhang and Balog [15] introduced
semantic features to embed queries and tables into a semantic
space, and then trained a supervised model using the semantic
and traditional features.

Inspired by recent progress of transfer learning on graph
neural networks, we propose a two-phased table retrieval
method which uses graph embeddings pretrained on a
large table corpus, denoted as Multiple Embeddings R-GCN
(MultiEm-RGCN). In phase I, we construct a knowledge
graph containing two types of knowledge: dataset-dependent
knowledge and dataset-agnostic knowledge. The graph con-
tains words and tables from a collection of tables as nodes. To
incorporate dataset-dependent knowledge, point-wise mutual
information (PMI) between word nodes, and term frequency-
inverse document frequency (TF-IDF) between table and word
nodes are computed based on the collection of tables. To
avoid overfitting, we incorporate dataset-agnostic knowledge
via external resources containing semantic knowledge from
pretrained word embeddings, and lexical knowledge from
WordNet. This incorporates a subgraph from WordNet into our
knowledge graph. We model the graph with R-GCN which is
used to learn multiple types of embeddings simultaneously. In
phase II, we solve the table retrieval task by incorporating the
R-GCN heterogeneous embeddings from phase I into a new
learning-to-rank (LTR) architecture that combines multiple
embedding spaces into one joint model. Results on the Wiki-
Tables [16] dataset demonstrate that our method outperforms
state-of-the-art table retrieval methods.

In summary, we make the following contributions:
• We propose the Multiple Embeddings R-GCN (MultiEm-

RGCN) method to solve table retrieval. MultiEm-RGCN
has two phases. In phase I, we propose a new knowl-
edge graph that incorporates both dataset-dependent and
dataset-agnostic knowledge from table corpus. External
semantic and lexical resources are used for edges and
nodes leading to an heterogeneous graph.

• Multiple types of embeddings are learned simultaneously
from our proposed knowledge graph using R-GCN with



the link prediction pre-training task. This leads to an
embedding for each node in the knowledge graph (word,
WordNet, and table nodes). In phase II, R-GCN em-
beddings are incorporated into an LTR architecture that
combines multiple embeddings from our heterogeneous
graph to solve the table retrieval task.

Experimental results on two public datasets (WikiTables [16]
and WebQueryTable [17]) demonstrate that our knowledge
graph based method outperforms state-of-the-art baselines.

II. RELATED WORK

A. Knowledge graph embeddings

Various methods have been proposed for representation
learning of knowledge graphs, which aims to project entities
and relations into a continuous space. TransE [18], inspired
by Word2Vec [19], is the most representative translation-based
model, which considers the translation operation between head
and tail entities for relations. The variants of TransE, such
as TransH [20] and TransR [21], follow a similar principle
but use different scoring functions to learn the embeddings.
Socher et al. [22] apply neural tensor networks to learn
knowledge graph embeddings. Dettmers et al. [23] propose
a convolutional neural network approach to learn knowledge
graph embeddings and use them to perform link prediction.
RDF2Vec [24] adapts the Word2Vec [19] approach to RDF
graphs in order to learn embeddings for entities in RDF graphs.

The recent success of graph neural networks has boosted
research on various tasks. R-GCN [5] pioneered the use of
graph convolutional networks to model relations in knowledge
graphs. The embeddings learned by R-GCN have shown to
be effective for downstream tasks such as entity classifi-
cation and link prediction. More recently, Xu et al. [25]
first construct a product knowledge graph and then propose
a self-attention-enhanced distributed representation learning
method with an efficient multi-task training schema to learn
the graph embeddings, which can improve the performance of
downstream tasks such as search ranking and recommendation.
The motivation behind our work is similar, where we first
construct a knowledge graph from table collections and then
learn the graph embeddings in order to perform table retrieval.

B. Word embedding for tables

Words are embedded into low dimensional real-valued vec-
tors based on the distributional hypothesis. In many proposed
models, the context is defined as the words that precede and
follow a given target word in a fixed window [26], [27].
Mikolov et al. [19] proposed the Skip-gram model which
scales to corpora with billions of words. Recent work has
used embedding techniques to learn a low dimensional rep-
resentation for table tokens in multiple tasks related to tables.
Ghasemi-Gol and Szekely [28] defined a new unsupervised
embedding for tables to perform table classification. They
define four distinct contexts for each cell value: text within
each cell, text in the corresponding attribute or header, text
in adjacent cells, and text surrounding the table in the web
page. Trabelsi et al. [29] proposed a word embedding of table

attributes tokens using contextual information of every table.
Chen et al. [11] proposed a method to generate table headers
which can be used as additional features for table search.

C. Ad hoc table retrieval

In a table retrieval task, a table can be considered as a
document, and traditional document retrieval methods can be
applied for table ranking. Cafarella et al. [7], [9] retrieve
relevant documents using web search engines, and then tables
are extracted from the highest-ranking retrieved documents.
The simplest approach is to represent a table by a single field
containing all the text associated with the table. The retrieval
score is then calculated using existing retrieval methods, such
as language models or BM25 [30].

In supervised table retrieval, multiple query, table, and
query-table features are proposed in the literature [6], [9].
Zhang and Balog [15] proposed extending these features with
semantic matching between queries and tables using various
semantic spaces: Word embeddings, Graph embeddings, Bag-
of-entities and Bag-of-categories. The DBpedia knowledge
base is used to construct a Boolean vector for both bag-
of-entities and bag-of-categories. The dimension of bag-of-
entities is equal to the total number of entities in the knowledge
base, where a value of 1 indicates that the entity is mentioned
in the table. The same applies to bag-of-categories with a
dimension equal to the total number of Wikipedia categories.
One drawback to this approach is that it is only effective when
the primary subjects of the tables appear in DBpedia. Since
DBpedia is sourced from Wikipedia, this means it will have
many relevant entities for famous people, places, and artistic
works, but will have sparser coverage on more specialized
topics, such as various proteins, aircraft parts, etc.

III. KNOWLEDGE GRAPH CONSTRUCTION AND
EMBEDDING LEARNING

We introduce the following notation for the rest of the paper.
We denote a knowledge graph by G = (V, T,R), with a set of
nodes V, a set of relation types R, and a set of directed edges
(vi, r, vj) ∈ T , where vi,vj ∈ V and r ∈ R. T can be seen as
an RDF collection that contains (s, p, o) triples representing
the knowledge graph. In this section, we first give a brief
overview of R-GCN. Then we introduce how to construct a
knowledge graph (KG) based on the table corpus given a set
of predefined relations, which incorporate dataset-dependent
knowledge and dataset-agnostic knowledge. After that, we
describe how to learn high-quality node embeddings based
on the constructed KG with link prediction as the pretraining
task under the R-GCN framework. Ultimately, we present a
Multiple Embeddings R-GCN (MultiEm-RGCN) model with
two phases: phase I consists of training unsupervised embed-
ding using R-GCN, and phase II consists of incorporating the
multiple embeddings into a new LTR model.

A. Relational graph convolutional networks (R-GCN)

R-GCN [5] can be seen as an extension of GCN [4], [31]
for relational data that operates on a local graph neighborhood



using a message-passing framework [32]. The R-GCN model
updates the hidden representation of node vi in the relational
graph as given by:
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where h
(l)
i ∈ Rd(l) is the l-th layer hidden state of node vi in

the neural network, d(l) is the dimension of the embedding
in the l-th layer, and σ(.) is a nonlinear activation function.
N r

i denotes the set of r-neighbors, where r ∈ R. ci,r is
a normalization constant that is equal to |Nr

i |. Unlike the
linear transformation in GCN that can be applied to any
node in a given layer, R-GCN has a relation specific linear
transformation, denoted by W

(l)
r , that depends both on the

type and direction of the edge in a directed and labeled graph.
W

(l)
0 is a trainable matrix that incorporates the l-th layer

representation into the l + 1-th layer of the neural network.
R-GCN is formed of multiple stacked layers with non-linear
activation functions to capture complex patterns in the graph
that are not only related to direct neighbors. Updating the
nodes in R-GCN for a given layer is done in parallel to reduce
computation time.

B. Heterogeneous Knowledge Graph Construction

In this subsection, we describe how to build a meaningful
knowledge graph for a large collection of tables that cap-
tures both general knowledge and dataset specific knowledge.
Our graph contains word nodes and table nodes. The word
nodes are constructed from the table collection and external
resources. For a given word in the table collection, we also
use its synonyms defined in WordNet and the hypernyms of
these synonyms, which also have corresponding nodes in our
constructed knowledge graph. In other words, our final graph
includes a subset of WordNet relevant to the table collection.

We construct edges that encode two types of knowledge:
dataset-dependent knowledge and dataset-agnostic knowl-
edge. For dataset-dependent knowledge, we build table-word
edges and word-word edges from the table collection. How-
ever, only pretraining node embeddings from such a graph
could overfit the dataset collection and harm the generalization
ability of learned node embeddings, especially given a small
training set. Therefore, we also propose to encode dataset-
agnostic knowledge from external resources such as other pre-
trained word embeddings and WordNet. By constructing edges
that encode both dataset-dependent knowledge and dataset-
agnostic knowledge, we assume the learned node embeddings
can capture both dataset specific information and open world
knowledge. The overview of our proposed knowledge graph
is shown in Figure 1. We build our graph G using RDF triples
T . Initially, T is empty, and in this section we show how to
build T .

1) Dataset-agnostic knowledge: We consider two types of
dataset-agnostic knowledge. The first is semantic knowledge
from word embeddings, such as Glove [27], pretrained on
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Fig. 1: Overview of phase I of the proposed method MultiEm-
RGCN. We use the same edge for hasCosine and hasPMI
to avoid clutter in the graph. We can notice that the words w2

and w3 have only the hasCosine2 relation because w2 and
w3 do not co-occur in the tables collection.

a large corpus. The cosine similarity of a word pair can be
treated as prior information for two word nodes in our graph.

Let dsemantic(wi, wj) denote the cosine similarity between
two words wi and wj , which is a real value in the interval
[−1, 1]. When building the knowledge graph, we do not keep
the exact value of dsemantic(wi, wj). Instead, we define sev-
eral relations that represent different levels of similarities. This
idea is inspired by the histogram matching method by Guo
et al. [33] used for query document matching. We discretize
the interval into a set of ordered bins and each bin has a
corresponding edge type. Suppose that W is the set of word
tokens in the training collection. We build the triples with
pcosine as the predicate only for those word pairs whose cosine
similarity is larger than a threshold Mcos, since we care more
about the semantic similarities rather than the dissimilarities,
and the inferred dissimilarities from word embeddings could
be inaccurate and trivial (two words randomly selected are
likely to be dissimilar). In order to reduce the effect of extreme
values which may result in bins with few data points, we
calculate the mean mcos and standard deviation stdcos of the
set of all valid cosine similarities. Then we set the interval as
[mincos,maxcos] where mincos is the smallest cosine simi-
larity that is larger than mcos− 2× stdcos, and maxcos is the
largest cosine similarity that is smaller than mcos+2×stdcos.
We linearly divide [mincos,maxcos] into ncos intervals and
the k-th interval has a corresponding predicate hasCosinek.
For example, if dsemantic(wi, wj) belongs to the k-th interval,
then we add (wi, hasCosinek, wj) to T . Note that there are
word pairs that have cosine similarity smaller than mincos: we



assign them to the 1st bin, and those have cosine similarity
larger than maxcos are assigned to the last bin. Here, we define
the set of semantic relation triples as

SemT = {(wi, hasCosinek, wj)|wi, wj ∈ W and
dsemantic(wi, wj) > Mcos}

(2)

where dsemantic(wi, wj) belongs to the k-th interval. We add
SemT to T .

The second type of dataset-agnostic knowledge incorporated
into our graph is lexical knowledge from WordNet [34].
Specifically, we define two additional relations in R. The
first relation corresponds to the edges between a word and
its synonyms (also called synsets) defined in WordNet. In
particular, given a word wi, we extract its synonyms, denoted
by Syni. We define the set of synonym relation triples SynTi

associated with wi and its synonyms Syni as

SynTi = {(wi, Synonym,wn)|wn ∈ Syni} (3)

with Synonym ∈ R. We add SynTi for every word wi ∈ W
to T .

The second relation corresponds to the edges between syn-
onyms in the graph. Given a node wni which is a synonym of
wi, we extract the hypernyms of wni, denoted by Hypi. Then,
we define the hypernym relation triples HypTi associated with
wni and its hypernyms as

HypTi = {(wni, Hypernym,wnj)|wnj ∈ Hypi} (4)

with Hypernym ∈ R. T is expanded by adding all triples
from HypTi.

To have a complete directed graph, for all triples (s, p, o),
we add the triples (o, p−1, s) to T , with p−1 is the inverse of
p. We have already added all cosine similarity edges because
hasCosine and hasCosine−1 are identical. We calculate
the triples from the inverse of Synonym and Hypernym,
denoted by Synonym−1 and Hypernym−1, respectively, and
we add the calculated triples to T . We choose not to treat
Synonym and Synonym−1 as identical relations because the
domain and range have different types (word-WordNet entity
edge).

2) Dataset-dependent knowledge: In order to incorporate
dataset specific information, we connect table nodes with word
nodes using TF-IDF relations. In particular, we calculate the
TF-IDF value for a word wi in table t ∈ C, denoted as
TF-IDF(t, wi). We follow the same binning approach that we
used for discretizing semantic similarities in order to obtain a
triple from TF-IDF(t, wi). For example, given ntfidf different
intervals, if TF-IDF(t, wi) belongs to the k-th interval, we
obtain the triple (t, hasTFIDF k, wi) which is added to T .
In this case, we expand R by adding ntfidf relations that are
related to TF-IDF.

The cosine similarity between two words from a pretrained
embedding encodes the co-occurrence information in the large
pretraining corpus. By encoding the local co-occurrence in-
formation in our table collection, the constructed knowledge
graph can retain dataset-specific relations. If we take the

headers of tables as an example, in multiple tables, we could
frequently find this sequence of headers (with different orders):
Birth date, Birth place, Death date, Death place, etc. So the
co-occurrence of tokens in this sequence of headers should
be high. We utilize PMI to describe local context information
using a sliding window strategy. The edge weight of each pair
of words is calculated by:

PMI (wi, wj) = log
p (wi, wj)

p (wi) p (wj)
(5)

where p (wi, wj) is the probability of co-occurrence of words
wi and wj in the same sliding window of length sw, which is
estimated by:

p (wi, wj) =
#Nco−occurrence (wi, wj)

#Nwindows
(6)

with #Nco−occurrence (wi, wj) is the number of times the pair
(wi, wj) co-occurs in the same sliding windows over the whole
table collection, and #Nwindows is the total number of sliding
windows of size sw over the whole collection of tables.

Binning is used again for PMI(wi, wj). Given npmi inter-
vals for the set of PMI values, if PMI (wi, wj) belongs to
the k-th interval, we obtain the triple (wi, hasPMIk, wj).
Given that the PMI calculation is symmetric, the triple
(wj , hasPMIk, wi) is also valid, and we add both triples to
T . After adding the triples, we expand R by adding npmi

relations that are related to PMI.
We add the inverse relations in order to finish construct-

ing the graph. Like the hasCosine relation, hasPMI and
hasPMI−1 are identical. For TF-IDF, we define a new
relation TF-IDF−1 ∈ R in order to compute the directed edges
from words to table nodes.

C. Knowledge Graph Embedding Learning

We use link prediction as the pretraining task to learn node
embeddings of the constructed knowledge graph in section
III-B. The objective of link prediction is to predict new facts
given by (s, p, o) triples. So, the directed labeled graph G
contains only a subset of possible edges, and the objective
is to predict the score f(s, p, o) of possible edge (s, p, o)
to determine the validity of the triple. We use the graph
auto-encoder model introduced by Schlichtkrull et al. [5] that
consists of a node encoder and scoring function for decoder.
The role of the encoder is to compute the embedding ei ∈ Rd

of node vi in the graph. So, the encoder is the R-GCN model,
and the node embedding is obtained by setting ei to hL

i , where
L is the number of layers in R-GCN and hL

i is the hidden
representation of node vi from the last layer. The role of
the decoder is to reconstruct edges of the graph using node
embeddings. This means that the decoder maps (s, p, o) triples
into a real valued score. The advantage of the encoder-decoder
architecture is the end-to-end training of both the embedding
and the scoring function.

The decoder function is based on DistMult factorization
[35] that has shown good results in link prediction despite
its simple expression. Every relation p ∈ R is associated with



a diagonal matrix Rp ∈ Rd×d, and the score f(vi, p, vj) of
triple (vi, p, vj) is given by:

f(vi, p, vj) = eTviRpevj (7)

where evi and evj are the embeddings of nodes vi and vj
respectively. The graph auto-encoder is trained with negative
sampling as in [5], [35], [36]. In particular, we treat the triples
in T as positive triples. For each tp ∈ T , we sample w negative
samples by either corrupting the object or subject of tp. We
optimize the graph auto-encoder parameters via link prediction
by minimizing the cross-entropy loss:

L = − 1

(1 + ω)|E|
∑︂

(s,p,o,y)∈T

y log σ(f(s, p, o))+

(1− y) log(1− σ(f(s, p, o)))

(8)

where T represents the set of positive and corrupted triples, y
is the label of triple which is set to 1 for positive triples, and
0 for corrupted triples, and σ is the logistic sigmoid function.
Minimizing the cross-entropy loss leads to having a higher
f(s, p, o) score for positive triples than the corrupted ones.

IV. KG EMBEDDING FOR TABLE RETRIEVAL

Our proposed heterogeneous graph includes information
from both the table collection and external resources, where
various relations among nodes are encoded. As described in
section III-C, after training the graph auto-encoder on the link
prediction task, the encoder provides an embedding for each
node in the graph that captures the graph structure and the
information that is passed from node to node using the edges
labeled by relations from R.

We show the quality of the trained embedding by incor-
porating node representations into a learning-to-rank (LTR)
model designed for table retrieval. Our trained graph auto-
encoder simultaneously provides embeddings for different
types of nodes (tables, words, synsets) in the knowledge
graph so that we can tackle the table retrieval problem by
using each embedding type independently or by having a
joint model that combines the multiple embeddings. In this
section, we discuss multiple LTR models that take advantage
of our proposed graph embeddings in order to improve the
results of ad hoc table retrieval. In training, a set of queries
Q = {q1, q2, . . . , qs}, and a table corpus C = {t1, t2, . . . , tl},
are given, where s and l are the total number of queries and
data tables, respectively. We denote the number of tokens per
query q ∈ Q by n, and the number of tokens per table tj ∈ C
by m. Each table tj has a relevance score, denoted by yj ,
to a given query q. We propose fw, a new joint embedding
LTR model with parameters w, which incorporates multiple
embedding spaces to predict the relevance score of a given
query-table pair (q, tj), such that higher ranked tables should
be more relevant to the query.

1) Graph word embedding: The first type of embedding
used in our LTR model is the word embedding obtained
from word nodes. After using the encoder to calculate the
embedding of each node, we collect word nodes to form a

word vocabulary for the tables collection, which is used to
compute the word embeddings of queries and tables. For a
given query q = q1, q2, . . . , qm where m is the length of
the query and ql is the l-th token of q, the R-GCN word
representation is given by

q = q1 ⊕ q2 ⊕ q3 ⊕ · · · ⊕ qm (9)

where qk ∈ Rd is a d-dimensional R-GCN word embedding
of token qk and ⊕ is the concatenation operator to build
the matrix q ∈ Rm×d. A given table tj is linearized by
concatenating metadata, such as table caption, page title,
headers, and data values. Then, R-GCN word embeddings are
used to map tj to an embedding matrix tj ∈ Rn×d.

For a given query-table pair (q, tj), the inputs to the word
embedding-based LTR model are q and tj . We choose the
Convolutional Kernel-based Neural Ranking Model (Conv-
KNRM), proposed by Dai et al. [37], as our word embedding-
based LTR architecture.

Conv-KNRM uses a Convolutional Neural Network (CNN)
to embed n-grams of the query and document into a unified
embedding space, and computes the similarity between each
pair of n-gram embeddings. These similarities are compared to
a set of K kernels, where each kernel is a normal distribution
with a given mean and standard deviation. Then kernel-
pooling [38] is used to summarize the similarities into a soft-
matching feature vector of dimension K; intuitively, this vec-
tor represents the probabilities that the similarities come from
the distribution specified by each kernel. The soft-matching
feature vector is computed for different n-grams of query and
document, and then they are concatenated into a single feature
vector. The extracted feature is then passed through a learning-
to-rank layer to predict a relevance score. We choose Conv-
KNRM as the main component in our LTR model because it
shows good performance in multiple benchmarks for document
retrieval. Moreover, the CNN approach of modeling n-grams
makes cross-matching between query and document tokens
feasible, effective, and efficient. The input embedding layer to
conv-KNRM is initialized using our word embeddings.

2) Graph embeddings for WordNet entities: Given a query
q = q1, q2, . . . , qm where m is the length of the query and ql
is the l-th token of q, we translate each token ql into a set
of synonyms and hypernyms, denoted by Trans(ql), using
WordNet. First, we extract the set of synonyms from WordNet
and we append it to Trans(ql). Then, we use a stack to extract
the hypernyms of synonyms, and then the transitive closure,
with a maximum of 20 hops, over hypernyms. So, Trans(ql)
forms a sequence of synonyms and hypernyms from WordNet.
Finally, the translated query, Trans(q), is given by:

Trans(q) = [Trans(q1);Trans(q2); . . . ;Trans(qm)] (10)

We apply the same idea to obtain the translation Trans(tj)
of a given table tj . After the translation step, our queries and
tables are represented as a sequence of WordNet entities. Given
that our graph auto-encoder produces embeddings for WordNet



entities (synonyms and hypernyms), we compute WordNet
embeddings for the translated query and table:

Trans(q) =
⨁︂

wn∈Trans(q)

wn;Trans(tj) =
⨁︂

wn∈Trans(tj)

wn

where wn ∈ Rd is a d-dimensional R-GCN Word-
Net embedding of wn, Trans(q) ∈ R|trans(q)|×d and
Trans(tj) ∈ R|trans(tj)|×d are the R-GCN embedding
matrices of Trans(q) and Trans(tj), respectively. We train
a Conv-KNRM model on table-query pairs of translated se-
quences using Trans(q) and Trans(tj) as inputs, and
with an embedding layer that is initialized using the R-GCN
embedding for WordNet nodes.

3) Graph table embedding: The embeddings for both word
and WordNet nodes can be used directly for tables and query
tokens. In contrast, embeddings of table nodes only provide
representations for tables. For a given query-table pair (q, tj),
in order to compute an embedding for queries using table
node embeddings, we propose an approach inspired by pseudo
relevance feedback, where we generate a pseudo-query by
aggregating the top-J tables returned by BM25. In particular,
given a query q and a collection of tables C, the pseudo-query
q′ is the sequence of closest J tables, t1, t2, . . . , tJ , to q using
BM25. The R-GCN table embeddings are used to compute the
embedding matrix q′ ∈ RJ×d which is given by

q′ = t1 ⊕ t2 ⊕ t3 ⊕ · · · ⊕ tJ (11)

where ti is the table embedding of ti which is computed using
R-GCN for table nodes in the knowledge graph.

Then, we aggregate q′ using a simple aggregation function
for neural networks, in order to compute the query embedding.
Our neural aggregation function is based on ARC-I [39] which
summarizes the meaning of a sequence through layers of
convolution and pooling, and produces a fixed length feature
vector qagg . In our case, the input sequence to ARC-I is q′.
The last layer of the feature extractor of the table embedding
model consists of a pointwise multiplication layer between
the table embedding tj of tj and qagg . The resulting feature
vector is passed through a multilayer perceptron (MLP) to
predict the relevance score of (q, tj).

4) Joint embedding: We describe phase II of our proposed
MultiEm-RGCN which combines all three types of embed-
dings into one LTR model. As shown in Figure 2, the phase
I embeddings are used to compute the query representation q̂
and table representation t̂j :

q̂ = q ⊕ Trans(q)⊕ q′; q̂ ∈ R(n+|Trans(q)|+J)×d

t̂j = tj ⊕ Trans(tj)⊕ tj ; t̂j ∈ R(m+|Trans(tj)|+1)×d

Then, we pass q̂ and t̂j through a Conv-KNRM model to
predict the final relevance score of (q, tj). The model is
trained to minimize the listwise loss function ListNet [40], and
generate a ranked list of tables for each query that matches the
ranking using the ground truth relevance scores. We choose not
to update phase I embeddings when minimizing the listwise
loss function to reduce model complexity, and focus the efforts

of training on learning the CNN filters and MLP weights of
Conv-KNRM.

𝑞 𝑡𝑗

WordNet

𝑞

𝑇𝑟𝑎𝑛𝑠(𝑞) 𝑇𝑟𝑎𝑛𝑠(𝑡𝑗)

𝑩𝑴𝟐𝟓 𝑪

𝑡1, 𝑡2, … , 𝑡𝐽

𝒇𝒘(𝑞, 𝑡𝑗)

𝑡𝑗 𝑞 𝑡𝑗

𝒒 𝒕𝒋

𝑾𝒐𝒓𝒅 𝑬𝒎𝒃𝒆𝒅𝒅𝒊𝒏𝒈𝒔

𝑻𝒓𝒂𝒏𝒔(𝒒) 𝑻𝒓𝒂𝒏𝒔(𝒕𝒋) ഥ𝒕𝒋

ഥ𝒕𝟏, ഥ𝒕𝟐, …, ഥ𝒕𝑱

Conv-KNRM

𝑾𝒐𝒓𝒅𝑵𝒆𝒕 𝑬𝒎𝒃𝒆𝒅𝒅𝒊𝒏𝒈𝒔 𝑻𝒂𝒃𝒍𝒆 𝑬𝒎𝒃𝒆𝒅𝒅𝒊𝒏𝒈𝒔

𝒒′

ෝ𝒒 ෝ𝒕𝒋

Fig. 2: Overview of phrase II of the proposed method
MultiEm-RGCN. The blue and orange edges represent the data
flow for a given query q and table tj , respectively. ⊕ denotes
the concatenation operator used to form the table embedding
of pseudo-query q′, the final query representation q̂, and the
final table representation t̂j . The Conv-KNRM bloc takes q̂
and t̂j as inputs to predict the final relevance score fw(q, tj).

V. EVALUATION

A. Data and query collections

The first dataset is the WikiTables 1 corpus [16] containing
over 1.6M tables. Each table has five indexable fields: table
caption, attributes (column headings), data rows, page title,
and section title. In addition, each table contains statistics:
number of columns, number of rows, and set of numerical
columns of the table. We use the same queries that were
used by Zhang and Balog [15] where every query-table pair is
evaluated using three numbers: 0 means “irrelevant”, 1 means
“partially relevant” and 2 means “relevant”. This collection has
60 queries with ground-truth relevance judgments. To evaluate
table retrieval, we report results of five-fold cross validation of
the entire query-table pairs collection for our proposed method
and baselines.

The second dataset is the WebQueryTable2 collection that is
introduced by Yan et al. [17]. Unlike the WikiTables collection
that contains tables only from Wikipedia, WebQueryTable is
composed of more various tables collected from web pages.
The total number of tables in WebQueryTable is 297, 884.
Each table has four indexable fields: table caption, table
subcaption, attributes (column headings), and data rows. In
addition, WebQueryTable [17] contains 21, 142 queries. Each

1http://websail-fe.cs.northwestern.edu/TabEL/
2https://github.com/tangduyu/Table-Intelligence/tree/master/table-search



TABLE I: Parameters values used in our proposed model

Model phases Parameters Values

Phase I

number of layers L 2
Mcos threshold 0.5

ncos,ntfidf ,npmi and intervals 3
PMI sliding window size sw 20
Table selection probability p 0.0001

Size of subgraph Sz 50000
Dimension of embedding d 100

Negative samples w 10
optimizer Adam optimizer with lr = 0.001

Phase II

Number of kernels K 5
number of extracted tables J 100
number of layers in ARC-I 2 with 50 CNN each

n-grams in Conv-KNRM unigram, bigram, and trigram
number of CNN filters per n-gram in Conv-KNRM 128

length of query n 6
number of tokens m per table 80

optimizer Adam optimizer with lr = 0.001

query-table has a binary relevance value, and only one table
is relevant to a given query. The total number of query-table
pairs is 1, 051, 075, where 839, 239 pairs are used to train our
LTR model of MultiEm-RGCN, and 211, 836 pairs are used
for testing.

B. Baselines

1) Unsupervised ranking approaches: A table is considered
as a single field document by concatenating indexable fields.
For example, in the WikiTables collection, we concatenate
table caption, attributes, data rows, page title and section
title. We compare our approach against a single-field ranking
method which is based on BM25 to calculate a retrieval score.
On the other hand, a data table can be considered as multi-
field document, so we compare against a multi-field ranking
method that is based on the pretrained Glove word embedding
when calculating cosine similarity. MaxTable [29] similarity
measure is used to calculate the score between query tokens
and a given field in a table.

2) Supervised ranking approaches: We compare our
method against state-of-the-art approaches for table retrieval:
LTR and STR [15]. We also compare against various embed-
dings that are used as input to Conv-KNRM. The first set
of embeddings are pretrained on large text corpuses and are
Word2Vec [19], Glove [27] and fastText [41]. The second
set of embeddings are pretrained on WikiTables which are
TabVec [28], and MCON [29].

C. Experimental Setup

In all reported results, we choose not to update the embed-
dings when minimizing the loss function for table retrieval
for two reasons: first we would like to directly compare the
quality of embeddings that we obtain from multiple methods.
Second, by freezing word embeddings, we reduce model
complexity, and focus the efforts of training on only updating
the parameters of LTR model.

Table I summarizes the parameters that are used in
MultiEm-RGCN. In each training step of R-GCN, we ran-
domly construct a connected subgraph of size Sz to make

computations feasible. Inverse relations enable constructing a
subgraph with multiple types of nodes. For example, without
inverse of TF-IDF relation, it is not possible to add a table
node to the subgraph when the current node is of type word.
Given that our graph contains more edges connecting words
and WordNet nodes, we force including table nodes in the
subgraph with probability p instead of picking a random node.

We evaluate the performance of our proposed method
and baselines on the table retrieval task using Normalized
Discounted Cumulative Gain (NDCG) [42], Mean Reciprocal
Rank (MRR), and Mean Average Precision (MAP).

D. Evaluation using the Wikitables corpus

1) Ranking results: Table II shows the performance of
different approaches on the WikiTables collection. We show
that our proposed method MultiEm-RGCN outperforms the
baselines for all evaluation metrics.

Among R-GCN embeddings, the word-based embedding
has better retrieval results than WordNet and table embeddings
as shown in Table II. This can be explained by the fact that
the graph contains many edges that have word nodes as the
subject or object. So, updating word nodes is more frequent
than updating WordNet and table nodes. In addition to that,
unlike table nodes that have only input edges from word nodes
using hasTFIDF−1 relation, and WordNet nodes that have
only inputs from other word and WordNet nodes, word nodes
receive input messages from all three types of nodes in the
graph using multiple relations.

Table II shows that using only R-GCN word embedding
leads to better retrieval results than the baselines, but it is
not the same case for WordNet and table embeddings which
are more useful when used in the joint model MultiEm-
RGCN. Most of the Conv-KNRM based baselines have better
results than STR, the state-of-the-art method for table re-
trieval. Conv-KNRM+MCON performs worse, likely because
it only computes word embeddings for attributes. Among
the baselines, Conv-KNRM combined with fastText achieves
higher performance for all evaluation metrics. The use of
character-level n-grams in fastText allows word embeddings



TABLE II: Table retrieval evaluation results using our proposed embedding and baselines for WikiTables dataset

Category Method NDCG@5 MAP MRR

Unsupervised ranking Single-field ranking 0.4511±0.0320 0.4773±0.0301 0.5162±0.0381
Multi-field ranking 0.4990±0.0263 0.4922±0.0291 0.5235±0.0274

Supervised ranking

LTR [6], [9] 0.5142±0.0391 0.5224±0.0354 0.5704±0.0193
STR [15] 0.5823±0.0376 0.5910±0.0375 0.6360±0.0372

Conv-KNRM+Glove [27] 0.5950±0.0332 0.5981±0.0323 0.6291±0.0312
Conv-KNRM+fastText [41] 0.6012±0.0325 0.6011±0.0342 0.6366±0.0300

Conv-KNRM+Word2vec [19] 0.6003±0.0313 0.6009±0.0252 0.6313±0.0266
Conv-KNRM+TabVec [28] 0.5951±0.0366 0.6022±0.0349 0.6352±0.0368
Conv-KNRM+MCON [29] 0.5820±0.0345 0.5838±0.0335 0.6248±0.0365

MultiEm-RGCN

R-GCN Word embedding 0.6130±0.0338 0.6079±0.0327 0.6414±0.0354
R-GCN WordNet embedding 0.5264±0.0920 0.5356±0.0721 0.5752±0.0845

R-GCN Table embedding 0.4744±0.0441 0.4869±0.0412 0.5354±0.0454
MultiEm-RGCN without q′ 0.6201±0.0282 0.6197±0.0283 0.6511±0.0283

MultiEm-RGCN 0.6246±0.0277 0.6242±0.0267 0.6565±0.0241

to be created even for terms that have not been seen before,
and reduce the negative effect of out of vocabulary tokens on
calculating the final relevance score of a query-table pair.

We explain the improvement in performance of our model
compared to baselines by two facts. First, our proposed graph
combines rich semantic and lexical general knowledge from
Glove and WordNet with data specific knowledge. This leads
R-GCN to learn nodes embeddings with a balance between
general knowledge and tables collection characteristics. Sec-
ond, our heterogeneous graph provides multiple embeddings
that can be incorporated into a single LTR architecture in
order to aggregate matching signals between query and table
in multiple spaces. This leads to more accurate calculation of
relevance score of a query-table pair.

2) Adding more features: We examine the effect of adding
data values and STR features to the MultiEm-RGCN model.
Table III shows table retrieval results using MultiEm-RGCN
with different combinations of features. Since it can be com-
putationally expensive to process all values from a table, we
randomly select 50 string values from each table, and append
the values tokens to description and attributes tokens in phase
II of MultiEm-RGCN. As shown in Table III, we obtain slight
improvements in retrieval results when adding random values
to description and attributes.

TABLE III: Table retrieval performance using MultiEm-
RGCN with different features for WikiTables dataset

Method NDCG@5 MAP MRR

Description+
attributes 0.6246±0.0277 0.6242±0.0267 0.6565±0.0241
Description+
attributes+values 0.6263±0.0252 0.6256±0.0287 0.6574±0.0339
Description+STR+
attributes+values 0.6272±0.0225 0.6285±0.0235 0.6595±0.0258

STR represents the set of features for query, table, and
query-table pairs and semantic features from various spaces.
We use precalculated STR features from [15]. We append
STR features to word, WordNet, and tables feature vectors,
and then train end-to-end the full system. Table III shows that
adding the large number of STR features only leads to a slight
improvement over using only table content and metadata.

Thus, not only does MultiEm-RGCN unified knowledge graph
exceed the performance of specialized LTR [6], [9] and STR
[15] features, but it also almost entirely captures any useful
signal present in those features. R-GCN word, WordNet, and
table embeddings are directly used in a joint LTR architecture,
and this leads to significant improvement over the state-of-the-
art STR table retrieval method.

3) Embeddings visualization: We visualize the embeddings
learned by MultiEm-RGCN. Figure 3 shows the t-SNE visual-
ization of nodes embeddings from the second layer in R-GCN
using the WikiTables collection. Figure 3 shows three different
spaces from embeddings which are: word (red dots), WordNet
(green dots), and table (blue dots). For each embedding space,
we randomly zoom a region to show the embeddings of nodes
of our proposed graph. For word embeddings, we can see
that the words mobile, telephone, phone, online, internet, web,
website, etc., are close to each other. The same interpretation
is valid for WordNet embeddings where synsets bridge.v.03,
bridge.v.04, crossing.n.05, lake.n.03, bridge.v.01, metro.v.01,
train.v.10, etc., are mapped to the same region in the Word-
Net embedding space. Finally, for table embedding space, a
selected region has the tables table-1064-451, table-1064-381,
table-1064-384, table-1064-402, table-1047-153, table-1047-
143, table-0938-612, etc., in the zoomed region after t-SNE
visualization. All these tables are related to the 2012 Summer
Olympics, and they show the list of world records in Olympics
for multiple sport events.

E. Evaluation using the WebQueryTable corpus

TABLE IV: Table retrieval results for WebQueryTable.

Method NDCG@5 MRR/MAP
Single-field ranking 0.5560 0.5362
Multi-field ranking 0.5849 0.5631

Conv-KNRM+Glove [27] 0.6004 0.5825
Conv-KNRM+fastText [41] 0.6097 0.5878

Conv-KNRM+Word2vec [19] 0.6072 0.5859
Conv-KNRM+TabVec [28] 0.6059 0.5856
Conv-KNRM+MCON [29] 0.5996 0.5798

MultiEm-RGCN 0.6438 0.6200

We also conduct experiments on WebQueryTable [17]. We
compare the performance of our method against unsuper-



Fig. 3: The t-SNE visualization of MultiEm-RGCN embeddings. There are three spaces of embeddings: word (red dots),
WordNet (green dots), and table (blue dots). For each type of embedding, we zoom a region to show the embeddings of nodes
of our proposed graph.

vised and supervised baselines, except for LTR/STR because
these methods require a wide range of features that are not
provided in the dataset. Similar to WikiTables, we obtain
three spaces of embeddings, which supports the hypothesis
that MultiEm-RGCN simultaneously learns multiple types of
embeddings from our heterogeneous graph. For the Web-
QueryTable dataset, there is only one relevant table per query,
so MRR is always equivalent to MAP (and thus MRR and
MAP are shown in the same column in Table IV). Consis-
tent with WikiTables, our results on WebQueryTable show
that incorporating multiple embeddings from MultiEm-RGCN
into Conv-KNRM improves the evaluation metrics of table
retrieval. This supports the hypothesis that MultiEm-RGCN
captures rich semantic and lexical general knowledge from
Glove and WordNet with data-specific knowledge when learn-
ing the embeddings of nodes. Then, as in WikiTables, our LTR
model in MultiEm-RGCN combines matching signals from
word, WordNet, and table nodes, which gives the possibility
for query and table to be matched in multiple spaces.

VI. CONCLUSION

In this study, we propose a novel table retrieval method
denoted by MultiEm-RGCN. We have shown that a relational
graph convolution network that incorporates both dataset-

dependent knowledge and dataset-agnostic knowledge outper-
forms the best previously published results in ad hoc table
retrieval (STR) [15]. MultiEm-RGCN has two phases. The first
phase consists of building a knowledge graph for a table corpus
that contains multiple types of nodes and edges. This hetero-
geneous graph aims to capture data-agnostic knowledge that is
semantic and lexical, and dataset-dependent knowledge that is
derived from contextual information and term frequencies. A
simple graph encoder with two R-GCN layers, and the Dist-
Mult decoder function are used to learn node embeddings by
minimizing a link prediction loss function. The second phase
consists of using R-GCN embeddings for the table retrieval
task. This is achieved by building a new LTR architecture that
combines word, WordNet, and table embeddings into one joint
model that improves retrieval metrics.

Future work includes investigating what additional knowl-
edge can make the graph more effective. For example, in-
cluding information such as what terms appear in column
heading or more techniques of value selection so that data
values can be best used to improve retrieval results without
substantially increasing training time. In addition, an interest-
ing future direction consists of testing the transfer learning
ability of MultiEm-RGCN embeddings using table collections
from multiple domains and tasks. Finally, we would like to



explore generalizing the approach to non-tabular datasets, such
as RDF dumps or XML files.
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