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Abstract

Multiple instance regression (MIR) operates on a collection of bags, where each

bag contains many instances sharing the same real-valued label. Only few in-

stances, called primary instances, contribute to the bag labels. The remaining

ones are noisy observations. The goal in MIR is to identify the primary in-

stances within each bag and learn a regression model that can predict the label

of a previously unseen bag. In this paper, we show that regression models can

be identified as clusters when appropriate features and distances are used. We

introduce an algorithm, called Robust Fuzzy Clustering for Multiple Instance

Regression (RFC-MIR), that can learn multiple linear models simultaneously.

First, RFC-MIR uses constrained fuzzy memberships to obtain an initial parti-

tion where instances can belong to multiple models with various degrees. Then,

it uses unconstrained possibilistic memberships to allow the initial local mod-

els to expand and converge to the global model. These memberships are also

used to identify the primary instances within each bag. After clustering, the

possibilistic memberships are used to identify the optimal number of regression

models. We evaluate our approach on synthetic data sets generated by varying

the dimensionality of the feature space, the number of instances per bag, and

the noise level. We also validate the RFC-MIR using two real applications: pre-

diction of the yearly average yield of a crop using remote sensing data; and drug

activity prediction. These applications have been used consistently to validate
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existing MIR algorithms. We show that our approach achieves higher accuracy

than existing methods.

Keywords: Multiple instance regression, Fuzzy clustering, Possibilistic

clustering, Multiple model regression.

1. Introduction

In standard supervised learning, each object is represented by a single feature

vector and a label. This label is categorical for classification problems and real-

valued for regression problems. However, some learning applications cannot

provide a label to each observation, and thus could not be solved with this5

traditional learning paradigm. An alternative framework of learning that tackles

the inherent labeling ambiguity better than supervised learning is the multiple

instance learning (MIL) paradigm [1, 2, 3]. In MIL, an object is represented by

a collection of feature vectors, or instances, called a bag. Each bag can contain

a different number of instances. Labels are available at the bag level, however,10

labels of individual instances within a bag are unknown. This many-to-one

relationship between instances and data labels produces an inherent ambiguity

in determining which instances in a given bag are responsible for its associated

label. MIL was formalized in 1997 by Dietterich et al. providing a solution

to drug activity prediction [1]. Ever since, MIL has increasingly been applied15

to a wide variety of tasks including drug discovery [4], image analysis [5, 6, 7,

8], content-based information retrieval [9], time series prediction [2], landmine

detection [10], information fusion [11, 12], and remote sensing [13].

Most of the existing work in MIL has focused on multiple instance classifica-

tion (MIC). In MIC, a bag is labeled negative if all of its instances are negative,20

and positive if at least one of its instances is positive. Given a training set of

labeled bags, the goal of MIC is to learn a concept that predicts the labels of

training data at the instance level and generalizes to predict the labels of testing

bags and their instances [1]. In addition to the above approach that is based

on the standard MIL assumption, multiple MIL paradigms have been proposed25
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[14].

Multiple instance regression (MIR) has received much less attention. In

MIR, bags have real-valued labels and the goal is to learn a regression model

that can predict the label of a new bag from the features of its instances. MIR

is a challenging learning task since we have no prior knowledge of the primary30

instances, i.e., instances within each bag that are relevant to its label. In fact,

for the general MIR setting, the unknown number of relevant instances can vary

from one bag to another. Predicting the label of a new test bag using a learned

MIR model is even more challenging.

In this paper, we introduce a novel MIR framework, called Robust Fuzzy35

Clustering for MIR (RFC-MIR). In RFC-MIR, we show that regression models

can be identified as clusters when appropriate features and distances are used.

We also show that fuzzy memberships are useful in obtaining an initial partition

where instances can belong to multiple models with various degrees, and possi-

bilistic memberships can be used to identify non-primary instances as noise and40

outliers and reduce their influence on the learned regression parameters.

2. Related work

Most existing work in MIL has focused on multiple instance classification

(MIC). MIC algorithms can be categorized into three main paradigms: instance

space, bag space, and embedded instance space. Instance space-based algo-45

rithms rely on the standard multiple instance assumption, which states that a

positive bag must contain at least one positive instance [1]; the labels of re-

maining instances are irrelevant. These algorithms seek points in the instance

feature space with strong correlation to instances from positive bags and no or

low correlation to instances from negative bags. These points, called target con-50

cepts (TC), serve as loci for instance-level class labeling. Examples of instance

space-based algorithms include the Axis-Parallel Rectangles (APR) [1] which

constructs a set of boundaries in the problem feature space to capture the TC.

Other instance space-based approaches include the Diverse Density (DD) [4]
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and EM-DD [15], which use optimization techniques to learn the TC. In [16],55

clustering methods were used to generalize the DD algorithm to learn multiple

target concepts simultaneously.

In the bag space MIC, each bag is mapped to an N -dimensional feature

vector based on a bag-to-bag comparator metric with respect to all N bags

within the training data. A key advantage of the bag space paradigm is that60

the mapped bag representation removes the instance-level ambiguity from the

problem. Examples of such methods include the Citation-kNN classifier [17]

and Multiple Instance Dissimilarity (MInD) [18].

Embedded instance space methods also map each bag to a single feature

vector. The difference is that target concepts in the instance space are used for65

this mapping, rather than bags. Examples include methods based on learning a

dictionary [19, 20] and other methods based on learning target concepts such as

DD-SVM [21] and MILES [6]. DD-SVM locates candidate TCs across multiple

runs of the DD algorithm with distinct starting points. MILES [6] considers

each instance from both positive and negative bags as a potential TC and uses70

a sparse SVM to select an optimal subset of instances. MIRSVM [8] is another

algorithm that extends the SVM classifier to multiple instance data. Other

classifiers that have been extended to handle multiple instance data include

kNN [17] and Neural Networks [22].

In contrast to MIC, in MIR there is no notion of positive/negative bags and75

target concepts. MIR aims to learn a regression model that maps each bag to

a real-valued output.

The two simplest approaches to MIR, that are commonly used as base-

lines (e.g., in [23, 24, 13]), are the Aggregated-MIR and Instance-MIR. The

Aggregated-MIR represents each bag by a single meta-instance, typically the80

mean of all the bag’s instances. Then, a model is learned by applying tradi-

tional regression techniques on the meta-instances. Instance-MIR propagates

the bag label to all of its instances and then uses all instances and traditional

regression techniques to learn the model.

Primary instance regression (PIR) [25] is one of the earliest MIR that main-85
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tains the bag structure. PIR assumes that the label of each bag is determined

by a single instance, called primary instance (i.e ”true instance”), and that the

rest of the instances in the bag are noisy observations. PIR is an iterative algo-

rithm that uses an EM-based approach to alternate between selecting the most

likely primary instances and fitting a linear regression to these instances.90

EM-MIR [13] is another multiple instance regression algorithm that assumes

that each bag contains a prime instance which determines the bag label. EM-

MIR treats the bag label as a random variable described with a mixture model.

The contribution of each instance to its bag label is proportional to its proba-

bility of being the prime instance. The EM algorithm is then used to learn the95

prior function and the prediction function parameters.

MI-ClusterRegress [23] is a different approach to MIR that uses clustering to

reduce MIR to a standard regression problem. It is motivated by the fact that

bags can contain instances drawn from a number of distinct underlying data

distributions. MI-ClusterRegress uses a clustering step to group instances of all100

bags into a predefined number of clusters. Instances that are relevant to each

cluster, called exemplars, are identified and used to build a local model for each

cluster using traditional regression techniques. The cluster with the best fitting

error is identified as the “prime” cluster and is responsible for the bags’ labels.

The potential drawback of MI-ClusterRegress is that clustering is performed105

in an unsupervised manner, without considering the bag labels. Moreover, it

assumes that all primary instances will be grouped into one cluster, which is

usually not the case especially in high dimensional feature spaces. In fact, if the

primary instances of all bags are split among multiple clusters, then the cluster

with the best fitting error may not necessarily correspond to the prime cluster110

(as will be illustrated in Section 3.1). For instance, a small cluster that has few

primary instances will have a better chance at being selected (lower error of fit)

as the prime cluster than a larger one that has the bulk of primary instances.

Since both clusters may include other non-primary instances, regression models

learned from exemplars of both clusters may deviate from the correct model.115

The deviation of the small cluster can be more severe due to reduced number
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of samples.

Even though many MIR algorithms have been proposed in the past few years,

predicting the label of a new test bag using the learned MIR model remains very

challenging and no existing methods have proved to accomplish this task without120

making restrictive assumptions. Early methods assume that a single instance

within each bag determines its label. These methods can identify primary in-

stances for labeled bags during learning, but cannot make prediction for a new

unlabeled bag unless its primary instance is known a priori. Other methods

such as Instance-MIR, PIR, and Aggregated-MIR assume all instances within a125

bag are relevant and are noisy versions of the primary instance. Instance-MIR

and PIR first predict the label of each instance within the test bag using the

learned regression model. Then, the labels of all instances are aggregated using

the mean or median to predict the label of the bag. Aggregated-MIR first com-

putes the test bag’s meta-instance (e.g. mean of all its instances) and uses it as130

input to the learned model. The above two approaches are reliable only when all

instances within each bag represent the ”true instance” with small deviations.

To label a new test bag, MI-ClusterRegress constructs the bag’s meta-

instance as the average of the bag’s instances weighted by their relevance to

the prime cluster identified during learning. The predicted label of this exem-135

plar is then treated as the bag’s label. This labeling approach is based on the

assumption that only the primary instances of the test bag will be assigned to

the prime cluster, which is not necessarily true.

3. Robust clustering to learn multiple regression models

Let D = {Bj , j = 1 . . . NB} be a collection of NB bags, where Bj =140

{(bij , yj), i = 1 . . . nj}, bij ∈ IRd is the attribute vector representing the ithth

instance from the jth bag, yj is the real-valued target value of the jth bag and

nj is the number of instances in the jth bag. The instances bij that determine

the label yj , called primary instances, are unknown. The objective of MIR is to

identify the primary instances within each bag, learn the regression model, and145
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be able to predict the label of previously unseen bags.

3.1. Motivating Example

First, we motivate our clustering-based approach by using a simple 1-D data

to illustrate the MI-ClusterRegress algorithm and its shortcomings. The data

include 100 bags and each bag has 5 instances and are displayed in figure 1(a)150

where the x-axis represents the 1-D feature of the instances and the y-axis

represents the label of each bag (all instances in one bag have the same y value

as they share the same label). All primary instances are displayed as green dots

and the remaining instances are displayed as red dots. Recall that in MIR this

information is not available, and that we use it here for illustrative purposes155

only. The first step in MI-ClusterRegress is to partition all instances into k

clusters. We use the K-Means algorithm [26] for this example and we let k = 4.

The resulting partition is shown in figure 1(b). Since the K-Means is applied

to the instance features only, it simply partitions the x-axis into 4 intervals.

The next step in MI-ClusterRegress is to identify the closest instance from each160

bag to each cluster center. These instances are referred to as exemplars. In

figure 1(c), we show exemplars of each cluster. The basic assumption in MI-

ClusterRegress is that the exemplars of one of the clusters will correspond to

the primary instances of all bags. However, comparing the primary instances in

figure 1(a) to the exemplars in figure 1(c), we notice that this is not the case.165

The next step in MI-ClusterRegress is to fit a linear regression model to the

exemplars of each cluster (as shown in figure 1(d) ) and identify the cluster that

has the smallest error fit. For this example, cluster 4 was selected. However,

as illustrated in figure 1(e), the learned regression model is quite different from

the true model used to generate the data.170

In the above example, MI-ClusterRegress failed to learn the correct regres-

sion model because the assumption that most exemplars of one of the clusters

will correspond to the true primary instances did not hold. This assumption

will be harder to maintain as the dimensionality of the feature space increases.
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(a) (b)

(c) (d)

(e)

Figure 1: Illustration of the MI-ClusterRegress algorithm [23] to learn a regression model

from multiple instance data. (a) Multiple instance data. Each bag has one primary instance

(green dots) and 4 noisy instances (red dots). (b) The 4 clusters obtained after partitioning

all instances. (c) Exemplars of the 4 clusters. (d) Regression models learned using exemplars

of every cluster. (e) True regression model vs model learned using MI-ClusterRegress.
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3.2. Robust clustering for MIR175

MI-ClusterRegress offers an interesting approach to solve the MIR problem.

It uses unsupervised learning (clustering) to separate the primary instances from

the noisy ones. However, it relies on a simple clustering algorithm that seeks

spherical clusters in the feature space, that are not necessarily relevant to the

regression model, and cannot identify noise and outliers. In this paper, inspired180

by MI-ClusterRegress, we propose a new approach, called Robust Fuzzy Cluster-

ing for Multiple Instance Regression (RFC-MIR). RFC-MIR performs clustering

and multiple model fitting simultaneously. Compared to MI-ClusterRegress, it

has four additional properties. First, instead of using clustering to partition the

instances in the feature space regardless of the labels of their bags, we com-185

bine the features and labels and use clustering, with an appropriate distance,

to identify multiple local regression models. Second, we use a robust clustering

approach so that non-primary instances (that incorrectly inherit the label of

the bag they belong to) can be treated as noise and outliers to minimize their

influence on the learned regression parameters. Third, we use fuzzy clustering190

so that each instance can contribute to each local regression with a fuzzy mem-

bership degree. Finally, we use properties of the possibilistic memberships to

find the optimal number of regression models.

Let xji = [bji, yi] ∈ IRd+1 represents the concatenation of the jth instance

from the ith bag and the label of its bag. Recall that labels are not available195

at the instance level and that yi is valid only for the primary instances of bag

i. Thus, many of the xji’s can have an irrelevant yi. We combine xji from all

training bags into D = {xji, i = 1 . . . NB , j = 1 . . . ni}. To simplify notation, we

assume that all bags have the same number of instances ni = n for i = 1 . . . NB ,

and we rewrite D = {xi, i = 1 . . . N}, where N = n×NB . Next, we show how200

clustering could be used to identify the primary instances from all of the N

instances and learn the MIR models simultaneously.

The fuzzy c-means (FCM) [27] algorithm minimizes

JF =

C∑
i=1

N∑
j=1

(uFij)
mdist2ij (1)
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In (1), C is the number of clusters, distij is the distance from xj to cluster

i, m > 1 is a weighting exponent called the fuzzifier, and uFij is the fuzzy

membership of xj in cluster i and satisfies the constraint:

uFij ∈ [0, 1] for all i,j; and

C∑
i=1

uFij = 1 for all j . (2)

The distance distij used in (1) controls the type and shape of clusters that

will be identified. Various distances have been proposed to identify ellipsoidal,

linear, and shell clusters such as lines, circles, ellipses, and general quadratics

[28, 29]. In this paper, we assume that the underlying regression model is

linear and we use (1) to identify multiple linear models. In particular, we use a

generalization of the distance in [30, 31] and let:

dist2ij =

d+1∑
k=1

vik((xj − ci) · eik)2 (3)

where ci is the center of cluster i, eik is the kth unit eigenvector of the covariance

matrix Σi of cluster i. The eigenvectors are assumed to be arranged in ascending

order of the corresponding eigenvalues λik. In (3), we let

vik =

[
d+1∏
j=1

λij

] 1

d+1

λik
, (4)

that is, more importance will be given to distances projected on the eigenvectors

associated with the smaller eigenvalues.

Optimization of (1) with distij in (3) subject to (2), using alternate opti-

mization, results in an iterative algorithm that alternates between updating the

fuzzy memberships using

uFij =

 C∑
k=1

(
dist2ij
dist2kj

) 1

m−1


−1

(5)
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and the center ci and covariance Σi of cluster i using

ci =

N∑
j=1

(uFij)
mxj

N∑
j=1

(uFij)
m

, (6)

and

Σi =

N∑
j=1

(uFij)
m(xj − ci)(xj − ci)

T

N∑
j=1

(uFij)
m

. (7)

The objective function of the FCM in (1) is known to be sensitive to noise and

outliers, and thus, is not suitable for the considered MIR application where we

know a priori that the data is very noisy as non-primary instances and their

labels should be treated as noise. Instead, we use the possibilistic c means

(PCM) [27], which relaxes the constraint in (2) and minimizes

JP =

C∑
i=1

N∑
j=1

(uPij)
mdist2ij +

C∑
i=1

ηi

N∑
j=1

(1− uPij)m (8)

where uPij ∈ [0, 1] is a possibilistic membership degree that is not constrained205

to sum to 1 across all clusters. It is close to 0 for samples that are considered

outliers, and close to 1 for inliers. In (8), ηi is a cluster resolution parameter

that could be fixed a priori or estimated using the distribution of the data within

each cluster [27].

Optimization of (8) also results in an iterative algorithm that alternates

between updating uPij using

uPij =
1

1 + (
dist2ij
ηi

)

1

m−1

(9)

and the center ci and covariance Σi as in (6) and (7) respectively.210

Since the PCM does not constraint the memberships uPij to sum to 1, it can

result in several identical clusters. We use this feature to identify the optimal

number of regression models [32]. We simply start with an over-specified number
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of clusters, then identify and merge similar ones. Two clusters are considered

similar and merged if
N∑

k=1

|uPik − uPjk|

N∑
k=1

|uPik|+
N∑

k=1

|uPjk|
< θM (10)

where θM is a threshold constant.

Currently, we assume that the underlying regression model is linear and thus,

it can be captured by a single linear cluster. Consequently, if the algorithm

identifies more than one cluster, say c′ > 1, we need to select the ”optimal” one,

p. Two possible criteria can be used to select this cluster. The first one is based

on minimizing the fitting errors, i.e.,

p = arg min
i=1,...c′

{
εi =

N∑
j=1

(uPij)
mdist2ij

}
(11)

An alternative approach is to select the cluster that covers the maximum number

of bags. Let

Pi = {xj , j = 1 . . . N | uPij > θP } (12)

be the set of inliers (i.e primary instances) assigned to cluster i, and

Bi = {Bk | xj ∈ Pi and xj is an instance of Bk}

be the set of bags that contribute to cluster i. In (12), θP ∈ [0, 1] is a constant

threshold. The ”optimal” cluster, p, can be identified as the one that has the

largest number of unique bags in Bi. In this paper, we report results using the

latter approach.

After identifying the optimal cluster, p, we let the primary instances of the215

data D be the primary instances of cluster p, i.e., P = Pp as it will be described

in Section 3.3.

The linear regression model parameters can be identified from the clus-

ter center cp and covariance matrix Σp. Let emin = [e1min, . . . , e
d+1
min] be the

eigenvector associated with the smallest eigenvalue λmin of Σp and let x =

[x1, . . . , xd, y] ∈ P be a primary instance. The fact that x and cp belong to the
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regression model leads to

emin · (x− cp) = 0,

or

emin · x = emin · cp.

Decomposing x into the instance feature vector [x1, . . . , xd] and its label y, we

obtain

ed+1
miny +

d∑
k=1

ekminx
k = emin · cp

Solving for y, we obtain the regression model:

y = f(x) =
emin · cp
ed+1
min

−
d∑

k=1

ekmin

ed+1
min

xk (13)

The resulting RFC-MIR algorithm is summarized in Algorithm 1. The ob-

jective of the first part (lines 5 – 11) is to partition the feature space and obtain

an initial set of local models that approximate the global model. Accuracy is not220

needed at this level as long as all dense regions in the feature space are covered

by some clusters. This is needed because possibilistic clustering can potentially

ignore dense regions (treats them as outliers) if they are not represented by

the initial clusters [33]. Different clustering algorithms could be used for this

initialization step including those that are based on crisp sets (e.g. K-Means al-225

gorithm [26]). In fact, even a standard clustering algorithm, with the Euclidean

distance, could be used to first partition the feature space into spherical clusters.

Then, a local linear model could be estimated for each cluster. In this paper,

we use the distance in (3) and fuzzy memberships to make the transition to the

possibilistic part of the RFC-MIR (lines 13 – 17) smoother. This choice tends230

to reduce the total number of iterations needed for the possibilistic clustering to

converge. The clusters’ parameters are updated for Iinit iterations, where the

default value of Iinit is set to 10.

The second component of RFC-MIR (lines 13 – 17) uses unconstrained mem-

berships to allow local models to expand by considering neighboring points (even235

if they belong to different clusters). Consequently, if the primary instances can
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be fit by one linear model, all initial local models will converge to the same

global model. As a final step, possibilistic memberships are used to identify

similar models (using (10)) and merge them. Crisp methods could not be used

for this component since they assign each data point exclusively to the best240

model. This constraint prevents clusters from absorbing nearby points if they

are slightly closer to other clusters. Thus, local models cannot expand and

evolve to the global model. In fact, even fuzzy methods where memberships in

all clusters are constrained to sum to one could not be used for this component.

3.3. Prediction Algorithm for RFC-MIR245

Primary instances in the training data can be identified using (12) as the

inliers, i.e., points that have high possibilistic membership. For testing, this

process is not as trivial since labels are needed to assign new memberships.

Thus, as all existing MIR methods, the proposed RFC-MIR needs to make

assumptions to predict the label of a new test bag. For instance, we could use250

the simple approach used in Instance-MIR and average the predicted labels of

all instances. Similarly, we could compute the test bag’s meta-instance as in the

Aggregated-MIR and predict its label. In this paper, we report results using

an approach similar to the one used in MI-ClusterRegress that takes advantage

of the data structure identified during training. We assume that the primary255

instance(s) of the test bag will be assigned to the prime cluster. Unlike MI-

ClusterRegress, RFC-MIR uses both the instances’ features and the bags’ labels

to learn the prime cluster. It also uses possibilistic memberships to identify and

ignore the effect of noisy instances. This imposes additional constraints while

learning the structure of the data and while identifying the primary instance of260

a test bag. Thus, the risk of violating the assumption is minimized.

Let Bt = {xt
1 . . .x

t
n} be a test bag with n instances. First, for each xt

i ∈ Bt,

we identify the closest primary instance (from training data) xP
i ∈ P. Then, we

assume that yPi , the label of xP
i , is a good initial estimate of the label of xt

i and

use [xt
i, y

P
i ] to estimate the possibilistic membership uPi of xt

i in the regression

model f . The primary instance of test bag Bt is identified as the instance that
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Algorithm 1 The RFC-MIR Algorithm

1: procedure RFC-MIR(D,C,m)

2: Inputs:

3: Training data D, an overestimated number of clusters C, fuzzifier m

4: Outputs: learned regression model f , set of primary instances P

5: Run FCM[30] for Iiter iterations to get initial partition

6: % get initial C distinct regression models

7: for Iiter iterations do

8: update centers using (6)

9: update covariance matrices using (7)

10: update fuzzy memberships using (5)

11: end

12: % Refine C models by ignoring noise and outliers

13: repeat

14: update centers using (6)

15: update covariance matrices using (7)

16: update possibilistic memberships using (9)

17: until All possibilistic memberships do not change significantly

18: Merge similar clusters using (10)

19: if number of remaining clusters c′ > 1 then

20: select ”optimal” cluster using (11)

21: Identify P, the set of primary instances using (12)

22: Identify regression model using (13)

has the highest possibilistic membership, i.e.

xt
prim = {xt

k | uPk = max
i=1...n

{uPi }} (14)

Finally, test bag Bt is labeled using

ŷ(Bt) = f
(
xt
prim

)
(15)
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Algorithm 2 The RFC-MIR-Predict Algorithm

1: procedure RFC-MIR-Predict(Bt,f ,P)

2: Inputs: New test bag Bt, primary instances P from training data,

learned regression model f .

3: Outputs: Primary instance of Bt: xt
prim, Prediction for Bt: ŷ(Bt)

4: for each xt
i ∈ Bt do

5: Find closest primary instance in P, xP
i , to xt

i

6: Approximate the label of xt
i with the label of xP

i , yPi

7: Estimate uPi (xt
i) using [xt

i, y
P
i ] in (9)

8: end for

9: Identify primary instance of Bt,xt
prim, using (14)

10: Label Bt using (15)

We should note here that it is possible to select multiple primary instances for

each test bag (e.g all instances with possibilistic membership above a threshold).

In this case, the label of Bt can be taken as the average of the labels of all

primary instances. The proposed labeling algorithm is summarized in Algorithm265

2.

4. Experimental Results

4.1. Synthetic datasets

To validate the proposed MIR and compare its performance to existing MIR

approaches, we generate a series of synthetic multiple instance data sets with270

linear models. We vary the dimensionality of the feature space, the number of

instances per bag, and the noise level added to the instances’ features and bags’

labels.

First, we generate the instances features, xij ∈ IRd, using

xij = ti + εFij , for i = 1, · · · , NB , and j = 1, · · · , ni, (16)

where ti is the primary instance of bag, Bi, generated from a d-dimensional

Gaussian distribution with zero mean and covariance =10Id×d. In (16), εFij is275
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a noise term added to the features. It is generated using a normal distribution

NF (µF =0,
∑F

=σF Id×d) for different values of σF . As the noise level increases,

xij will divert from being a primary instance to an irrelevant one.

The label of each bag, Bi, is generated using

yi = h(ti) + εLi , (17)

where

h(x) =

d∑
k=1

akxk (18)

is a linear d-dimensional function. In (18), ak are constant coefficients that will

be generated randomly. In (17), εLi is a noise term, added to the true label. It is280

generated from a normal distribution NL(µL=0, σL) for different values of σL.

Using the above strategy, we generate multiple data sets by varying:

1. The dimensionality of the feature space, d from 1 to 10.

2. The noise level added to the features in (16). We let

σF = k1 × σF
0 , (19)

with σF
0 =0.1 and k1 varies from 1 to 100.

3. The noise level added to the bags’ labels in (17). We let

σL = k2 × σL
0 , (20)

with σL
0 =0.05 and k2 varies from 1 to 25.285

4. The number of instances per bag, ni, from 5 to 100.

For each set of parameters, we create 10 linear models by generating random

coefficients ak (used in (18)). For each model, we generate one data collection

that includes 100 bags, i.e. NB=100.

First, we use a simple 1-D data to illustrate the different steps of the proposed290

RFC-MIR. The true model of this data is h(x) = 6x, and each bag has 5

instances. For the noise levels, we use k1=100 and k2=2.

This data is displayed in figure 2(a) where the x-axis represents the 1-D fea-

ture of the instances and the y-axis represents the label of each bag (all instances

17



(a) (b)

(c) (d)

Figure 2: Illustrations of the steps of RFC-MIR: (a) Example of MIR data, (b) initial 3 clusters

obtained using fuzzy memberships, (c) Result after 3 iterations with possibilistic memberships

where the 3 clusters started converging to the same model and RFC-MIR starts identifying

noisy instances (displayed as black dots), (d) Result after convergence and merging similar

clusters.
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in one bag have the same y value as they share the same label). All primary295

instances are displayed as filled blue circles and the remaining ones are displayed

as red ’x’. Recall that in MIR this information is not available, and that we

use it here for illustrative purposes only. Using C=3, figure 2(b) displays the

3 initial clusters obtained after running the RFC-MIR for few iterations with

fuzzy memberships. Points that belong to different clusters are displayed with300

different symbols and colors. Figure 2(c) displays the results after switching

from fuzzy to possibilistic memberships and running the algorithm for 3 itera-

tions. As it can be seen, RFC-MIR started identifying noisy instances (displayed

as black circles) and the 3 linear clusters started converging to the same true

model. Figure 2(d) displays the final results after the clusters became identical305

and got merged into one using (10). Points with high possibilistic memberships

(> 0.75) are located along the linear model. These points will be considered the

primary instances. All others, will be treated as irrelevant ones.

Next, we compare the results of RFC-MIR with 4 MIR algorithms that were

outlined in Section 2. These are the MI-Cluster Regress [23], the Instance-MIR

and Aggregated-MIR [23, 24], and the Primary-MIR [25]. For each data set, we

compute the mean square error (MSE) using:

MSE =
1

NB

NB∑
i=1

(yi − ŷ(Bi))
2, (21)

where yi is the true label of bag Bi and ŷ(Bi) is the label estimated using the

MIR algorithm being evaluated.310

For all of the remaining experiments, we set the initial number of models C

to 10, θM in (10) to 0.1, θP in (12) to 0.75, and the fuzzifier m to 2. The value

of ηi in (9) is estimated using the average fuzzy intra-cluster distance of cluster

i as recommended in [27]. In Algorithm 1, RFC-MIR converges (line 17) when

the possibilitic memberships of all bags in all clusters do not change by more315

than 0.01 between 2 consecutive iterations.

In the following experiments, unless stated otherwise, we fix k1, used to

control the level of noise added to the instances in (19) and k2, used to control the

19



Figure 3: Comparison of RFC-MIR with 4 other MIR algorithms as the level of noise added

to the true labels is increased.

noise added to bags’ labels in (20) to 10. We also set the number of instances per

bag, ni, and the dimensionality of the instance space, d, to 5 and 1 respectively.320

In the first experiment, we vary the noise level added to the bags’ labels by

increasing k2 from 1 to 25. For each value of k2, we generate 10 data sets using

10 linear models that use random coefficients (ak’s in (18 )). The results of this

experiment are displayed in Figure 3 where for each value of k2, we display the

mean MSE averaged over the 10 random models. We also display the variance325

of the MSE as a vertical error bar. As it can be seen, RFC-MIR has the lowest

error. Moreover, the results of the 10 random models are consistent as indicated

by the low MSE variations across the random models.

In a second experiment, we vary k1 from 1 to 100. The results are displayed

in Figure 4 where the proposed RFC-MIR has the lowest MSE average and330

variation. It is interesting to note that MI-ClusterRegress has almost the worst

performance in Figure 3 and very competitive results in Figure 4. This suggests

that MI-ClusterRegress is robust to noisy features since they are included in the

clustering step. In fact, noisy features can be assigned to the non-prime cluster
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Figure 4: Comparison of RFC-MIR with 4 other MIR algorithms as the level of noise added

to the features is increased.

and will not affect the learned model. On the other hand, MI-ClusterRegress is335

sensitive to noise present in the bag’s labels. This is expected since these labels

are not used in the clustering step but used later in learning the model of the

prime cluster.

In a third experiment, we vary the number of instances per bag, ni from 5 to

100. In general, adding more instances increases the number of irrelevant ones340

and makes the MIR problem more challenging. The results of this experiment

are displayed in Figure 5. As it can be seen, the proposed RFC-MIR algorithm

is very robust even in the presence of a large number of irrelevant instances. On

the other hand, for all other 4 algorithms the average MSE increases at a much

higher rate as more irrelevant instances are added to each bag.345

In a fourth experiment, we vary the dimensionality of the instances, d, from

1 to 10. The results are displayed in Figure 6. As for the previous experiments,

the proposed RFC-MIR maintains the lowest MSE values.
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Figure 5: Comparison of RFC-MIR with 4 other MIR algorithms as the number of instances

per bag is increased.

Figure 6: Comparison of RFC-MIR with 4 other MIR algorithms as we increase the dimen-

sionality of the instances.

4.2. Application to remote sensing

A common application that has been used to validate most existing MIR

algorithms is the prediction of crop yield based on remote sensing observations

[13, 34, 23, 35]. Predicting the yearly average yield of a crop per acre for a given
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region, especially when done early in the growing seasons, can be very beneficial.

We use data collected by the MODIS instruments onboard satellites that provide

cover of the entire US every 1-2 days [35]. In particular, we use the 8-day

aggregate product which provides observations, in the red and near infrared

(NIR), of each pixel location (250m×250m on the surface of the earth) every

8 days. The RED and NIR values are combined to generate the Normalized

Difference Vegetation Index (NDVI) using:

NDV I =
NIR−RED
NIR+RED

(22)

NDVI provides good indication of vegetation abundance and is good for iden-350

tifying pixels that contain crops. Consequently, each pixel is represented by a

time series where the ith observation corresponds to the pixel’s NDVI after 8×i

days.

Multiple instance representation and learning is used for this application be-

cause it involves uncertainties at multiple levels. First, labels (average yield per355

acre) are available at the county level but are almost impossible to report at the

pixel level. Also, the pixel-level NDVI feature can be used to discriminate be-

tween vegetation and other categories. However, it cannot distinguish between

pixels that correspond to different types of crop. Thus, a group of pixels (e.g.

within a county) should be considered collectively.360

Considering all pixels within a bag as a group makes it possible to apply

multiple instance learning methods. However, as with most MIR applications,

additional assumptions are needed to predict the label of a new test bag. On

one hand, predicting the output of each instance and combining them may be

intuitive but it ignores the fact that a large number of pixels may belong to365

different regions such as cities, forest, water, etc. On the other hand, selecting

one primary instance from each bag ignores the fact that multiple instances may

be needed to predict the average yield of a county and that an average obtained

from a single sample may not be accurate. In our experiments, we compare the

prediction error of few methods that use different assumptions.370

We use data from the California region over a period of 5 years (2001-2005)
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to predict the yield of corn and wheat in each county. These are the same data

sets used in [23] to validate MI-ClusterRegress. This application is challenging

because each county contains thousands of pixels and we do not know which

pixels (or even how many) contain the crop of interest. We use a randomly375

sub-sampled data such that 100 pixels are selected for each county. Thus, each

county is represented by one bag of 100 instances1 . Observations from the first

4 years (2001 – 2004) are used for training. The learned regression models are

then used to predict the yield for 2005. Let fD, for D = 8, 16, · · · , 360 be the

regression model to predict the yield at day D. fD is trained with the sequence380

of NDVI observations taken every 8 days from the beginning of the year until

day D. Thus, fD will involve D/8-dimensional instance vectors. For each data,

we run the five MIR algorithms 10 times and report the mean MSE and standard

deviation of all runs.

Figure 7 compares the MSE of the five algorithms to predict corn yield and385

Figure 8 compares the results to predict wheat yield. We only consider the days

of the growing season (days 140-280 for corn and days 0-180 for wheat). As it

can be seen for both crops, RFC-MIR provides more accurate and consistent

prediction.

To gain more insights and investigate the validity of the assumptions made390

by the different MIR algorithms to label test bags, in Figure 9 we plot the

prediction error, (yi − ŷ(Bi))
2, for each test bag, Bi, versus the fraction of

instances within Bi that have been assigned high possibilistic membership values

(uP ≥ θP = 0.75) by RFC-MIR. We assume that these learned memberships

can provide good estimates of the number of primary instances within each test395

bag. For this experiment, we use the corn data and we consider the values

predicted at day 176 for each algorithm.

First, we note that the number of primary instances per bag can vary sig-

nificantly: from 5% to almost 95%. For RFC-MIR, the prediction errors vary

1The pre-processed and sub-sampled data is publicly available at

http://harvist.jpl.nasa.gov/papers.shtml
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Figure 7: Comparison of the MSE of MI-ClusterRegress, Instance-MIR, Aggregated-MIR,

Primary-MIR and RFC-MIR for predicting the yearly average yield of corn at different days

of the growing season.

between 0 and 15 with no correlation to the number of primary instances per400

bag. This is not the case for the other algorithms. For example, in Figure

9(b), for Instance-MIR the prediction error is around 20 when the fraction of

primary instances is less than 0.75, then it drops around 5 when more than

80% of the instances in a bag are primary. These results are expected since this

method predicts the bag’s output as the average output of all of its instances.405

Aggregated-MIR, Primary-MIR, and MI-ClusterRegress have similar behavior

where the prediction error drops for most bags with more primary instances.

For Aggregated-MIR and Primary-MIR, the prediction error remains high for

few bags even if they have more than 80% primary instances. One possible ex-

planation for Aggregated-MIR is that this method predicts the bag’s output as410

the output of its meta-instance (mean of all instances), and this exemplar can

be affected even by very few noisy instances. For Primary-MIR, one possible

explanation is that the optimization (EM) used to identify the primary instance
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Figure 8: Comparison of the MSE of MI-ClusterRegress, Instance-MIR, Aggregated-MIR,

Primary-MIR and RFC-MIR for predicting the yearly average yield of wheat at different days

of the growing season.

of each bag can lead to sub-optimal solution for some bags.

4.3. Applications to Drug Activity Prediction415

A well-known application, in pharmaceutical industry, that has been used to

validate MIR algorithms is the drug activity prediction [36]. This application,

known as Quantitative Structure-Activity Relationships (QSAR) [37], is based

on the concept that a biological effect of a given drug is a function of its chemical

structure.420

Molecules can adopt multiple shapes by rotating some of their internal bonds.

These rotations result in different conformations. Each conformation is char-

acterized by potential energy that is determined by the interactions between

the molecule’s atoms. Conformers, that have the lowest energy, determine the

chemical and biological properties of a molecule. Thus, only conformations that425
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(a) (b)

(c) (d)

Figure 9: Prediction error for each bag vs. the fraction of instances within the bag that

were identified by RFC-MIR as primary instances. The yearly average yield of corn was

predicted at day 176 for each algorithm. (a) RFC-MIR vs. Aggregated-MIR; (b) RFC-MIR

vs. Instance-MIR; (c) RFC-MIR vs. MI-ClusterRegress; and (d) RFC-MIR vs. Primary-MIR
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correspond to local energy minima are possible candidates for binding. These

low energy conformations can be computed using several methods including

Monte Carlo search of bond-angle space [38], systematic bond-angle search [39],

simulated annealing [40] and genetic algorithms [41, 42, 43].

Recently, some nonlinear approaches based on machine learning techniques,430

such as artificial neural network, have been proposed to predict drug-target

interaction [44, 45]. Other approaches, such as Bayesian ranking prediction [46],

are based on predetermined interactions between known molecules and targets.

In [47], the authors propose an invariant representation of the molecule, using an

inductive logic programming (ILP). The above approaches use a single feature435

vector representation as input to traditional regression algorithms. Using this

encoding, information about individual conformations is lost. Consequently, the

conformation that is responsible for the interaction with a given target cannot

be recovered.

The multiple instance learning approach is suitable for this application since440

it maintains a representation of the multiple low energy conformations and any

one can potentially be a binding candidate to the target protein. Within MIL,

some approaches treat the drug-target interactions as a classification problem

[48, 49]. These methods use a binary label for drug-target interactions, and

predict the presence or absence of interaction between the pair. However, It445

may be more valuable and challenging to determine the binding affinity as a real

value that represents the strength of the interaction between drug and target

protein. In this case, the problem is treated as a multiple instance regression.

Using MIR to predict drug-target interaction offers two main benefits: first,

there is no need to have a global representation of the molecule and information450

about the individual conformations can be maintained. Second, the strength of

the binding can be predicted. In an MIR setting, a drug is represented by a bag

that contains all possible structures of this molecule and features extracted from

each structure represent an instance within the bag. Labels at the instance level

are not available and not needed, and the bag’s label is the affinity of the drug455

to a given target protein. Given a set of drugs with their possible structures and
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Table 1: Comparison of the accuracy of the proposed RFC-MIR with 4 MIR methods on the

Thrombin Inhibitors dataset .

MI-Cluster

Regress

Instance-

MIR

Aggregated-

MIR

Primary-

MIR

RFC-MIR

3.89± 0.87 4.83±0.97 4.25± 0.77 3.92± 0.89 3.74± 0.76

known affinities to a target protein, the objective of MIR is to learn a model

that can predict the affinity to the target of a new drug.

To validate the applicability of our RFC-MIR appraoch to the drug-target

interaction problem, we use a publicly available dataset that consists of Throm-460

bin inhibitors [50] that can be used as anti-coagulant. This dataset consists

of 40 thrombin inhibitors. Each drug or inhibitor contains between 3 and 334

structures and is assigned a real valued affinity to a target protein. Each in-

stance or structure is a 6 dimensional feature vector. It corresponds to a 4-point

pharmacophore representation [51]. In this representation, the Euclidean dis-465

tances between 4 different chemical groups are calculated. This leads to a
(
4
2

)
=6

dimensional feature vector.

We divide the data into training and testing using 5 fold cross validation to

evaluate RFC-MIR and compare it to other MIR algorithms. As in the previous

experiments, we run each MIR algorithm 10 times and report the mean and470

standard deviation of the MSE across all runs.

The results are summarized in Table 1. As it can be seen, RFC-MIR out-

performs the other methods in term of MSE and standard deviation. As in the

previous experiments, we can attribute the better performance of the RFC-MIR

to the possibilistic membership function that can ignore noisy instances, iden-475

tify the primary instances and use them to learn the regression model. For this

application, Instance-MIR and Aggregated-MIR have the worst performance

because some bags can contain a very large number of instances (up to 334

conformations). In these cases, many of these instances are irrelevant. Thus,

computing one meta-instance as the average of all instances or averaging the480
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output of all instances can lead to large prediction errors.

5. Conclusions

We proposed a new approach to multiple instance regression based on robust

multi-model fitting. By combining the bags’ instances and labels, and using an

appropriate distance that measures the deviation of a point from a linear model,485

we showed that a possibilistic clustering algorithm can be used to estimate the

regression model in a MIR setting. More importantly, we showed that the

possibilistic memberships can be used to identify the primary instances and the

irrelevant instances within each bag. Using several synthetic data sets with

known structure and different levels of noise and difficulty, we showed that our490

approach achieves higher accuracy than state of the art methods. We have

also validated our approach using real applications in remote sensing and drug

activity prediction. Using a multiple instance data representation, we showed

that RFC-MIR can be used to predict the bag’s output without the need to

label the training data at the instance level. We also showed that RFC-MIR can495

provide more accurate and consistent predictions than state of the art methods.

Currently, we assume that the regression model is linear and after clustering,

we identify a single model that has instances from the maximum number of

distinct bags and/or minimizes the fitting error. We are currently investigating

two strategies to generalize our approach to non-linear regression. The first500

one is based on the assumption that a non-linear model can be approximated

by multiple piecewise linear models. In this case, after convergence, instead

of selecting the best model, we need to identify the multiple valid models and

their domains. The second approach modifies the distance measure used within

the clustering objective function to represent the fitting error with respect to a505

non-linear model.

30



Acknowledgment

This work was supported in part by U.S. Army Research Office Grants Num-

ber W911NF-13-1-0066 and W911NF-14-1-0589. The views and conclusions

contained in this document are those of the authors and should not be inter-510

preted as representing the official policies, either expressed or implied, of the

Army Research Office, or the U.S. Government.

References

[1] T. Dietterich, R. Lathrop, T. Lozano-Pérez, Solving the multiple instance
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